Tensor[WeylTensor] - calculate the Weyl curvature tensor of a metric
Calling Sequences
WeylTensor(g, R)
Parameters
g - a metric on a manifold M
R - (optional) the curvature tensor of the metric g, as computed from the Christoffel symbols of g
Description
Examples
See Also
Let Rijhk be the rank 4 covariant tensor obtained from the curvature tensor of g by lowering its first index with the metric g. Let Rih be the Ricci tensor and R the Ricci scalar. The trace-free part of Rijhk is the Weyl tensor Wijhk of the metric g. If the dimension of M is n, then
Wijhk=Rijhk −1n−2gihRjk−gjhRik−gikRjh+gjkRih+1n−1n−2gihgjk−gjhgikR.
The Weyl tensor vanishes identically in dimension n=3. If g‾=f*g, then Wg‾ = f*Wg.
In addition to being trace-free over any index pair, the Weyl tensor also satisfies the first Bianchi identity.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form WeylTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-WeylTensor.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a 3 dimensional manifold M and show that the Weyl tensor of a randomly defined metric g1 is zero.
DGsetup⁡x,y,z,M
frame name: M
g1≔evalDG⁡y2⁢dx&tdx+x⁢z⁢dy&tdz+dz&tdy
g1:=y2⁢dx⁢dx+x⁢z⁢dy⁢dz+x⁢z⁢dz⁢dy
Calculate the Christoffel symbols.
C1≔Christoffel⁡g1
C1:=D_x⁢dx⁢dyy+D_x⁢dy⁢dxy−12⁢z⁢D_x⁢dy⁢dzy2−12⁢z⁢D_x⁢dz⁢dyy2+12⁢D_y⁢dx⁢dyx+12⁢D_y⁢dy⁢dxx−y⁢D_z⁢dx⁢dxx⁢z+12⁢D_z⁢dx⁢dzx+12⁢D_z⁢dz⁢dxx+D_z⁢dz⁢dzz
Calculate the curvature tensor.
R1≔CurvatureTensor⁡C1
R1:=14⁢z⁢D_x⁢dy⁢dx⁢dzy2⁢x+12⁢z⁢D_x⁢dy⁢dy⁢dzy3−14⁢z⁢D_x⁢dy⁢dz⁢dxy2⁢x−12⁢z⁢D_x⁢dy⁢dz⁢dyy3+14⁢z⁢D_x⁢dz⁢dx⁢dyy2⁢x−14⁢z⁢D_x⁢dz⁢dy⁢dxy2⁢x−14⁢D_y⁢dx⁢dx⁢dyx2+14⁢D_y⁢dx⁢dy⁢dxx2−12⁢D_y⁢dy⁢dx⁢dyy⁢x+12⁢D_y⁢dy⁢dy⁢dxy⁢x−14⁢z⁢D_y⁢dy⁢dy⁢dzy2⁢x+14⁢z⁢D_y⁢dy⁢dz⁢dyy2⁢x−14⁢D_z⁢dx⁢dx⁢dzx2−12⁢D_z⁢dx⁢dy⁢dzy⁢x+14⁢D_z⁢dx⁢dz⁢dxx2+12⁢D_z⁢dx⁢dz⁢dyy⁢x+12⁢D_z⁢dz⁢dx⁢dyy⁢x−12⁢D_z⁢dz⁢dy⁢dxy⁢x+14⁢z⁢D_z⁢dz⁢dy⁢dzy2⁢x−14⁢z⁢D_z⁢dz⁢dz⁢dyy2⁢x
Calculate the Weyl tensor.
W1≔WeylTensor⁡g1,R1
W1:=0⁢dx⁢dx⁢dx⁢dx
Example 3.
Define a 4 dimensional manifold and a metric g2.
DGsetup⁡x,y,z,w,M2
frame name: M2
g2≔evalDG⁡dx&tdx+dx&tdy+dy&tdx+x⁢y⁢dz&tdw+dw&tdz
g2:=dx⁢dx+dx⁢dy+dy⁢dx+y⁢x⁢dz⁢dw+y⁢x⁢dw⁢dz
Calculate the Weyl tensor directly from the metric g2.
W2≔WeylTensor⁡g2
W2:=−16⁢dx⁢dy⁢dx⁢dyy2+16⁢dx⁢dy⁢dy⁢dxy2+16⁢dy⁢dx⁢dx⁢dyy2−16⁢dy⁢dx⁢dy⁢dxy2−16⁢x2⁢dz⁢dw⁢dz⁢dw+16⁢x2⁢dz⁢dw⁢dw⁢dz+16⁢x2⁢dw⁢dz⁢dz⁢dw−16⁢x2⁢dw⁢dz⁢dw⁢dz−112⁢x⁢dx⁢dz⁢dx⁢dwy−112⁢x⁢dx⁢dz⁢dy⁢dwy+112⁢x⁢dx⁢dz⁢dw⁢dxy+112⁢x⁢dx⁢dz⁢dw⁢dyy−112⁢x⁢dx⁢dw⁢dx⁢dzy−112⁢x⁢dx⁢dw⁢dy⁢dzy+112⁢x⁢dx⁢dw⁢dz⁢dxy+112⁢x⁢dx⁢dw⁢dz⁢dyy−112⁢x⁢dy⁢dz⁢dx⁢dwy+112⁢x⁢dy⁢dz⁢dw⁢dxy−112⁢x⁢dy⁢dw⁢dx⁢dzy+112⁢x⁢dy⁢dw⁢dz⁢dxy+112⁢x⁢dz⁢dx⁢dx⁢dwy+112⁢x⁢dz⁢dx⁢dy⁢dwy−112⁢x⁢dz⁢dx⁢dw⁢dxy−112⁢x⁢dz⁢dx⁢dw⁢dyy+112⁢x⁢dz⁢dy⁢dx⁢dwy−112⁢x⁢dz⁢dy⁢dw⁢dxy+112⁢x⁢dw⁢dx⁢dx⁢dzy+112⁢x⁢dw⁢dx⁢dy⁢dzy−112⁢x⁢dw⁢dx⁢dz⁢dxy−112⁢x⁢dw⁢dx⁢dz⁢dyy+112⁢x⁢dw⁢dy⁢dx⁢dzy−112⁢x⁢dw⁢dy⁢dz⁢dxy
We check the various properties of the Weyl tensor. First we check that it is skew-symmetric in its 1st and 2nd indices, and also in its 3rd and 4th indices.
SymmetrizeIndices⁡W2,1,2,Symmetric
0⁢dx⁢dx⁢dx⁢dx
SymmetrizeIndices⁡W2,3,4,Symmetric
Check the 1st Bianchi identity.
SymmetrizeIndices⁡W2,1,3,4,SkewSymmetric
Check that W2 is trace-free on the indices 1 and 3.
h2≔InverseMetric⁡g2:
ContractIndices⁡h2,W2,1,1,2,3
0⁢dx⁢dx
Finally we check the conformal invariance of the Weyl tensor by computing the Weyl tensor W3 for g3 = fy,zg2 and comparing W3 with fy,zW2
g3≔evalDG⁡f⁡y,z⁢g2:
C3≔Christoffel⁡g3:
R3≔CurvatureTensor⁡C3:
W3≔WeylTensor⁡g3,R3:
evalDG⁡W3−f⁡y,z⁢W2
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], ContractIndices, CurvatureTensor, Physics[Riemann], InverseMetric, Physics[g_], SymmetrizeIndices
Download Help Document