Frobenius
inert Frobenius function
Calling Sequence
Parameters
Description
Examples
References
Frobenius(A)
Frobenius(A, 'P')
A
-
square Matrix
'P'
(optional) assigned the transformation matrix
The Frobenius function is a placeholder for representing the Frobenius form (or Rational Canonical form) of a square matrix. It is used in conjunction with either mod or evala.
The Frobenius function returns the square matrix F which has the following structure: F = diag(C[1], C[2],.., C[k]) where the Ci are companion matrices associated with polynomials p1,p2,..,pk with the property that pi divides pi−1, for i = 2..k.
If called in the form Frobenius(A, 'P'), then P will be assigned the transformation matrix corresponding to the Frobenius form, that is, the matrix P such that inverse(P) * A * P = F.
The call Frobenius(A) mod p computes the Frobenius form of A modulo p which is a prime integer. The entries of A must have rational coefficients or coefficients from an algebraic extension of the integers modulo p.
The call evala(Frobenius(A)) computes the Frobenius form of the square matrix A where the entries of A are algebraic numbers (or functions) defined by RootOfs.
A≔Matrix⁡1+x,1+x2,1+x2,1+x4
A≔1+xx2+1x2+1x4+1
F≔Frobenius⁡A,Pmod2
F≔0x5+x1x4+x
P
11+x0x2+1
Test the result
map⁡Normal,Inverse⁡Pmod2·A·P−Fmod2
0000
A1≔Matrix⁡−3−4⁢RootOf⁡_Z2+1⁢x2+1−2⁢RootOf⁡_Z2+1⁢x−5−4⁢RootOf⁡_Z2+1,−4+4⁢RootOf⁡_Z2+1⁢x2+6+3⁢RootOf⁡_Z2+1⁢x−6+2⁢RootOf⁡_Z2+1,2+6⁢RootOf⁡_Z2+1⁢x2+5−3⁢RootOf⁡_Z2+1⁢x+2+2⁢RootOf⁡_Z2+1,−3−5⁢RootOf⁡_Z2+1⁢x2+4+4⁢RootOf⁡_Z2+1⁢x+6+2⁢RootOf⁡_Z2+1:
F1≔evala⁡Frobenius⁡A1,P1
F1≔0−43⁢RootOf⁡_Z2+1+21⁢−1168⁢RootOf⁡_Z2+1⁢x3+1145⁢x4+442⁢x2⁢RootOf⁡_Z2+1−2119⁢x3−1482⁢x⁢RootOf⁡_Z2+1+796⁢x2−144⁢RootOf⁡_Z2+1−1726⁢x−62211451−3⁢RootOf⁡_Z2+1+2⁢39⁢x2−16⁢x+4+7⁢RootOf⁡_Z2+1+11⁢x⁢RootOf⁡_Z2+113
P1
1−3+4⁢RootOf⁡_Z2+1⁢25⁢x2+5⁢x+31−8⁢RootOf⁡_Z2+1+10⁢x⁢RootOf⁡_Z2+12501+3⁢RootOf⁡_Z2+1⁢−9⁢x⁢RootOf⁡_Z2+1+10⁢x2−2⁢RootOf⁡_Z2+1−2⁢x+45
map⁡evala@Normal,P1−1·A1·P1−F1
Martin, K., and Olazabal, J.M. "An Algorithm to Compute the Change Basis for the Rational Form of K-endomorphisms." Extracta Mathematicae, (August 1991): 142-144.
Ozello, Patrick. "Calcul Exact des Formes de Jordan et de Frobenius d'une Matrice." PhD Thesis, Joseph Fourier University, Grenoble, France, 1987.
See Also
LinearAlgebra[FrobeniusForm]
LinearAlgebra[Modular]
RootOf
Download Help Document