RandomNetwork - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GraphTheory[RandomGraphs]

  

RandomNetwork

  

generate a random network

 

Calling Sequence

Parameters

Options

Description

Examples

Calling Sequence

RandomNetwork(n,p,options)

RandomNetwork(n,p,q,options)

RandomNetwork(V,p,options)

RandomNetwork(V,p,q,options)

Parameters

n

-

positive integer, larger than 1

p

-

numeric value between 0.0 and 1.0

V

-

list of vertices

q

-

numeric value between 0.0 and 1.0

options

-

(optional) equation(s) of the form option=value where option is one of acyclic, seed, or weights

Options

• 

acyclic = truefalse

  

If the option acyclic is specified, a random acyclic network is created.

• 

seed = integer or none

  

Seed for the random number generator. When an integer is specified, this is equivalent to calling randomize(seed).

• 

weights = range or procedure

  

If the option weights=m..n is specified, where mn are integers, the network is a weighted graph with edge weights chosen from [m,n] uniformly at random.  The weight matrix W in the graph has datatype=integer, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.

  

If the option weights=x..y where xy are decimals is specified, the network is a weighted graph with numerical edge weights chosen from [x,y] uniformly at random.  The weight matrix W in the graph has datatype=float[8], that is, double precision floats (16 decimal digits), and if the edge from vertex i to j is not in the graph then W[i,j] = 0.0.

  

If the option weights=f where f is a function (a Maple procedure) that returns a number (integer, rational, or decimal number), then f is used to generate the edge weights.  The weight matrix W in the network has datatype=anything, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.

Description

• 

RandomNetwork(n,p) creates a directed unweighted network on n vertices. The larger p is, the larger the number of levels in the network.

• 

RandomNetwork(V,p) does the same thing except that the vertex labels are chosen from the list V.

• 

You can optionally specify q which is a numeric value between 0.0 and 1.0.  The result is a random network such that each possible arc is present with probability q. The default value for q is 0.5.

• 

The random number generator used can be seeded using the seed option or the randomize function.

Examples

withGraphTheory:

withRandomGraphs:

NRandomNetwork10,0.5

NGraph 1: a directed graph with 10 vertices and 28 arc(s)

(1)

IsNetworkN

1,10

(2)

DrawGraphN

NRandomNetworka,b,c,d,e,0.5,acyclic

NGraph 2: a directed graph with 5 vertices and 6 arc(s)

(3)

DrawNetworkN

NRandomNetwork10,0.2,acyclic,weights=1..5

NGraph 3: a directed weighted graph with 10 vertices and 31 arc(s)

(4)

WeightMatrixN

0100000000003132223000012010200000412024000001131400000052340000000025000000004200000000040000000000

(5)

MaxFlowN,1,10

1,0100000000001000000000010000000000100000000001000000000010000000000010000000000000000000010000000000

(6)

See Also

AssignEdgeWeights

GraphTheory:-DrawGraph

GraphTheory:-DrawNetwork

GraphTheory:-IsNetwork

GraphTheory:-MaxFlow

RandomBipartiteGraph

RandomDigraph

RandomGraph

RandomTournament

RandomTree