PaleyGraph - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GraphTheory[SpecialGraphs]

  

PaleyGraph

  

construct Paley graph

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

PaleyGraph(p)

PaleyGraph(p,k)

PaleyGraph(p,k,m)

Parameters

p

-

prime integer

k

-

positive integer

m

-

irreducible univariate polynomial of degree k over GF(p)

Description

• 

If the input is PaleyGraph(p) where p is congruent to 1 modulo 4, then the output is an unweighted undirected graph G on p vertices labeled 0,1,...,p-1 where the edge {i,j}, with i<j, is in G iff j-i is a quadratic residue in Zp.

• 

If the input is PaleyGraph(p) where p is congruent to 3 modulo 4, then the output is an unweighted directed graph G on p vertices labeled 0,1,...,p-1 where the arc [i,j] is in G iff j-i is a quadratic residue in Zp.

• 

If the input is PaleyGraph(p,k) where q=pk is congruent to 1 modulo 4, then the output is an unweighted undirected graph G on q vertices labeled 0,1,...,q-1 where the edge {i,j}, i<j, is in G iff y-x is a square in the finite field GF(q), where x is the ith element and y is the jth element in GF(q). The numbering of the elements in GF(q) is lexicographical.

• 

Similarly, if the input is PaleyGraph(p,k) where q=pk is congruent to 3 modulo 4, then the output is an unweighted directed graph G on q vertices labeled 0,1,...,q-1 where the arc [i,j] is in G iff y-x is a square in the finite field GF(q), where x is the ith element and y is the jth element in GF(q). The numbering of the elements in GF(q) is lexicographical.

• 

The vertex label for the element f(x) in Zp[x] is f(p). For example, in GF(23) the elements are ordered 0,1,x,x+1,x2,x2+1,x2+x,x2+x+1. Thus the label for element x2+1 is 22+1=5.

• 

The field can be specified by the user by specifying the extension polynomial for GF(q), a monic irreducible polynomial m(x) in Zp[x] of degree k.

Examples

withGraphTheory&colon;

withSpecialGraphs&colon;

PPaleyGraph5

PGraph 1: an undirected graph with 5 vertices and 5 edge(s)

(1)

DrawGraphP

EEdgesP

E0&comma;1&comma;0&comma;4&comma;1&comma;2&comma;2&comma;3&comma;3&comma;4

(2)

PPaleyGraph2&comma;2

PGraph 2: an undirected graph with 4 vertices and 6 edge(s)

(3)

DrawGraphP

EEdgesP

E0&comma;1&comma;0&comma;2&comma;0&comma;3&comma;1&comma;2&comma;1&comma;3&comma;2&comma;3

(4)

PPaleyGraph3&comma;2&comma;y2+1

PGraph 3: an undirected graph with 9 vertices and 18 edge(s)

(5)

DrawGraphP

See Also

SpecialGraphs