GroupTheory
Elements
get the elements of an object
Calling Sequence
Parameters
Description
Examples
Compatibility
Elements( S )
S
-
a group data structure, an orbit, a coset, or conjugacy class
The Elements command computes the set of elements of an object.
The input object S may be a group object, an orbit, a coset, or a conjugacy class.
with⁡GroupTheory:
G≔Alt⁡4
G≔A4
E≔Elements⁡G
E≔1,2,4,1,23,4,1,32,4,1,3,4,1,4,3,1,42,3,1,4,2,2,4,3,,1,3,2,1,2,3,2,3,4
nops⁡E=GroupOrder⁡G
12=12
Check the parity of the elements of G.
map⁡PermParity,E
1
orb≔Orbit⁡2,G
orb≔2A4
Elements⁡orb
1,2,3,4
H≔SylowSubgroup⁡2,G
H≔1,23,4,1,32,4
rc≔RightCosets⁡H,G:
c≔rc−1
c≔1,23,4,1,32,4·2,3,4
Elements⁡c
1,2,4,1,4,3,1,3,2,2,3,4
cc≔ConjugacyClasses⁡G
cc≔A4,1,23,4A4,2,3,4A4,2,4,3A4
GroupOrder⁡G=add⁡i,i=map⁡nops@Elements,cc
The GroupTheory[Elements] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[AlternatingGroup]
GroupTheory[ConjugacyClasses]
GroupTheory[Cosets]
GroupTheory[GroupOrder]
GroupTheory[Orbit]
GroupTheory[PermParity]
GroupTheory[SylowSubgroup]
Download Help Document