GroupTheory
IsMetacyclic
attempt to determine whether a group is metacyclic
Calling Sequence
Parameters
Description
Examples
Compatibility
IsMetacyclic( G )
G
-
a finite group
A group G is metacyclic if it is an extension of a cyclic group by another cyclic group. The extension need not be proper; that is, a cyclic group is metacyclic.
The IsMetacyclic( G ) command attempts to determine whether the group G is metacyclic. It returns true if G is metacyclic and returns false otherwise.
with⁡GroupTheory:
IsMetacyclic⁡Symm⁡3
true
IsMetacyclic⁡Symm⁡4
false
IsMetacyclic⁡MetacyclicGroup⁡3,2,3
IsMetacyclic⁡FrobeniusGroup⁡186,1
IsMetacyclic⁡CyclicGroup⁡9
The GroupTheory[IsMetacyclic] command was introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
GroupTheory[DerivedSubgroup]
GroupTheory[IsCyclic]
GroupTheory[IsSoluble]
Download Help Document