LeftCosets - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

LeftCosets

  

construct the left cosets of a subgroup of a group

  

RightCosets

  

construct the right cosets of a subgroup of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

LeftCosets( H, G )

RightCosets( H, G )

Parameters

G

-

a permutation group or a Cayley table group

H

-

a subgroup of G

Description

• 

The LeftCosets( H, G ) command returns the set of left cosets of the subgroup H of the permutation group G.

• 

The RightCosets( H, G ) command returns the set of right cosets of the subgroup H of the permutation group G.

• 

In each case, the collection of cosets (left or right) is returned as a set.

• 

The group G must be an instance of either a permutation group or a Cayley table group, and H must be a subgroup of G.

Examples

withGroupTheory:

GAlt4

GA4

(1)

GroupOrderG

12

(2)

HSylowSubgroup2,G

H1,23,4,1,32,4

(3)

GroupOrderH

4

(4)

lcLeftCosetsH,G

lc·1,23,4,1,32,4,2,3,4·1,23,4,1,32,4,2,4,3·1,23,4,1,32,4

(5)

nopslc=GroupOrderGGroupOrderH

3=3

(6)

Since the subgroup H is normal in G, the left and right cosets coincide.

mapRepresentative,lc

2,4,3,,2,3,4

(7)

mapRepresentative,RightCosetsH,G

2,4,3,,2,3,4

(8)

IsNormalH,G

true

(9)

Compatibility

• 

The GroupTheory[LeftCosets] and GroupTheory[RightCosets] commands were introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[Coset]

GroupTheory[GroupOrder]

GroupTheory[IsNormal]

GroupTheory[SylowSubgroup]