GroupTheory
SymplecticGroup
construct a permutation group isomorphic to a symplectic group
Calling Sequence
Parameters
Description
Examples
Compatibility
SymplecticGroup(n, q)
Sp(n, q)
n
-
an even positive integer
q
power of a prime number
The symplectic group Sp⁡n,q is the group of all n×n matrices over the field with q elements that respect a fixed nondegenerate symplectic form. The integer n must be even.
The SymplecticGroup( n, q ) command returns a permutation group isomorphic to the symplectic group Sp⁡n,q .
Note that for n=2 the groups Sp⁡n,q and SL⁡n,q are isomorphic, so that a special linear group is returned in this case.
If either, or both, of n and q is non-numeric, then a symbolic group representing the symplectic group is returned.
The Sp( n, q ) command is provided as an abbreviation.
In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.
with⁡GroupTheory:
G≔SymplecticGroup⁡4,5
G≔Sp4,5
ifactor⁡GroupOrder⁡G
27⁢32⁢54⁢13
GroupOrder⁡SylowSubgroup⁡2,G
128
S3≔SylowSubgroup⁡3,G
S3≔⟨a permutation group on 624 letters with 2 generators⟩
GroupOrder⁡S3
9
IsCyclic⁡S3
false
IdentifySmallGroup⁡S3
9,2
GroupOrder⁡SylowSubgroup⁡5,G
625
IsTrivial⁡PCore⁡5,G
true
GroupOrder⁡SylowSubgroup⁡13,G
13
G≔SymplecticGroup⁡4,3
G≔Sp4,3
Degree⁡G
80
IsSimple⁡G
GroupOrder⁡Centre⁡G
2
For n=2 the corresponding special linear group is returned.
SymplecticGroup⁡2,5
SL2,5
Note the exceptional isomorphism:
AreIsomorphic⁡SymplecticGroup⁡4,2,Symm⁡6
G≔SymplecticGroup⁡6,q
G≔Sp6,q
GroupOrder⁡G
q9⁢q2−1⁢q4−1⁢q6−1
ClassNumber⁡SymplecticGroup⁡8,q
5⁢q+q+1⁢q+4⁢q2+q2+q+3⁢q+q4+q3+7q::even25⁢q+51+q+4⁢q+11⁢q2+q2+4⁢q+10⁢q+q4+4⁢q3otherwise
ClassNumber⁡SymplecticGroup⁡4,11kassumingk::posint
5⁢11k+10+11k2
The GroupTheory[SymplecticGroup] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
The GroupTheory[SymplecticGroup] command was updated in Maple 2020.
See Also
GroupTheory[AreIsomorphic]
GroupTheory[ClassNumber]
GroupTheory[Degree]
GroupTheory[Generators]
GroupTheory[GroupOrder]
GroupTheory[ProjectiveSymplecticGroup]
GroupTheory[SpecialLinearGroup]
GroupTheory[SymmetricGroup]
Download Help Document