LREtools/HypergeometricTerm/HypergeometricSolution - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : LREtools/HypergeometricTerm/HypergeometricSolution

LREtools[HypergeometricTerm]

  

HypergeometricSolution

  

return the hypergeometric solution of linear difference equation depending on a hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

HypergeometricSolution(eq, var)

HypergeometricSolution(eq, var, term, cert)

Parameters

eq

-

linear difference equation depending on a hypergeometric term

var

-

function variable for which to solve, for example, z(n)

term

-

hypergeometric term

cert

-

certificate of the right-hand side

Description

• 

The HypergeometricSolution(eq, var, term, cert) command returns the hypergeometric solution of the linear difference equation eq. If such a solution does not exist, the function returns NULL.

• 

The hypergeometric term in the linear difference equation is specified by a name, for example, t. The meaning of the term is defined by the parameter term. It can be specified directly in the form of an equation, for example, t=n!, or specified as a list consisting of the name of term variable and the consecutive term ratio, for example, t,n+1.

• 

If the third parameter is omitted, then the input equation can contain a hypergeometric term directly (not a name). In this case, the procedure extracts the term from the equation, transforms the equation to the form with a name representing a hypergeometric term, and then solves the transformed equation.

• 

In the current state, the procedure handles only equations with hypergeometric right-hand sides. Here the term "hypergeometric" means that for the right-hand side Rx,tx the ratio Rx+1,tx+1Rx is a rational function in x and t (such a ratio is referred to as "certificate"). For the two argument case the procedure computes and checks the certificate. For the four argument case the certificate should be given directly in cert parameter and equation eq should be homogeneous.

• 

The search for a hypergeometric solution is reduced to searching a rational solution by change of the function variable yx=zxRx,tx, where Rx,tx is the right-hand side and zx is a new function variable that should be rational.

• 

The solution is the function, corresponding to var. The solution may involve arbitrary constants of the form, for example, _c1 and _c2.

Examples

withLREtoolsHypergeometricTerm:

eqyx+1yx2x+1x+1x252x+1x+1x272x+1x+1+x22xx+32xxx+232xx

eqyx+1yx2x+1x+1x252x+1x+1x272x+1x+1+x22xx+32xxx+232xx

(1)

solHypergeometricSolutioneq,yx

solx2+3x+232x+1x+1x2+52x+1x+1x+272x+1x+1x22xx32xxx232xx2tx2+10xtx2+54t3x23,t,4

(2)

IsSolutionsol,eq,yx

true

(3)

simplifySubstituteTermsol,x

2xxx2+3x+23

(4)

eq2xyx+1yx2x2xx+122x+1x+1+x22xx2x

eq2xyx+1yx2x2xx+122x+1x+1+x22xx2x

(5)

solHypergeometricSolutioneq,yx

solx22x+1x+12x2x2+22x+1x+12x2x+2x22x+1x+1x22xx2t2x2+4t2x+2t2x2,t,4

(6)

IsSolutionsol,eq,yx

true

(7)

simplifySubstituteTermsol,x

x22xx

(8)

eq0tyx+1yxt

eq0tyx+1yxt

(9)

certt232t4x2+128t4x+128t4x22x1x2+2t4x2+4t4x+2t4

certt232t4x2+128t4x+128t4x22x12t4x2+4t4x+2t4x2

(10)

solHypergeometricSolutioneq0,yx,t,2,cert

solx22t4x2+4t4x+2t4x2,2t232t4x2+128t4x+128t4x22x12t4x2+4t4x+2t4x2,t,2

(11)

eqeq0Productsubsx=n,t=2n,cert,n=0..x1

eqtyx+1yxtn=0x12n232n22n4+128n2n4+1282n4n22n12n22n4+4n2n4+22n4n2

(12)

ssol11Productsubsx=n,t=2n,sol12,n=0..x1

sx2n=0x122n232n22n4+128n2n4+1282n4n22n12n22n4+4n2n4+22n4n22t4x2+4t4x+2t4x2

(13)

IsSolutions,t,2,eq,yx

true

(14)

See Also

LREtools[HypergeometricTerm]

LREtools[HypergeometricTerm][RationalSolution]