AreSame - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


AreSame

check if two LHPDE objects are the same

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

AreSame( obj1, obj2, criteria = crit)

AreSame( obj1, obj2, criterion = crit)

Parameters

obj1, obj2, ...

-

LHPDE objects

crit

-

(optional) a string: "sameOperator", "sameSystem", or "sameSolutions"

Description

• 

The AreSame method checks if the two LHPDE objects obj1 and obj2 are the same.

• 

This methods returns true if obj1 and obj2 are the same, in the sense they match the following criteria:

1. 

criterion = "sameSystem" -- they are identical meaning that they have same independent variables, same dependent variables (with same dependencies) and same system of DEs.

2. 

criterion = "sameOperator" -- they have the same operator. That is, LHPDO(obj1) matches LHPDO(obj2) apart from the ordering of DEs. See examples below.

3. 

criterion = "sameSolutions" -- they have the same solutions.

• 

The default criterion is "sameOperator". That is, AreSame(obj1, obj2) is equivalent to AreSame(obj1, obj2, criteria = "sameOperator").

• 

In the second calling sequence, the word criterion is provided as alias for criteria.

• 

This method is associated with the LHPDE object. For more detail, see Overview of the LHPDE object.

Examples

withLieAlgebrasOfVectorFields:

E2LHPDEdiffξx,y,y,y=0,diffηx,y,x=diffξx,y,y,diffηx,y,y=0,diffξx,y,x=0,indep=x,y,dep=ξ,η

E22y2ξx,y=0,xηx,y=yξx,y,yηx,y=0,xξx,y=0,indep=x,y,dep=ξx,y,ηx,y

(1)

E2pLHPDEdiffαx,y,y,y=0,diffβx,x=diffαx,y,y,diffαx,y,x=0,indep=x,y,dep=α,β

E2p2y2αx,y=0,ⅆⅆxβx=yαx,y,xαx,y=0,indep=x,y,dep=αx,y,βx

(2)

The two LHPDE objects are the same as operators:

AreSameE2,E2p

true

(3)

The method returns true as the dependent variable names are different, their LHPDOs (Delta, Delta1) are the same.

ΔconvertE2,LHPDO

Δξ,η→yyξ,xη+yξ,yη,xξ

(4)

Δ1convertE2p,LHPDO

Δ1α,β→yyα,xβ+yα,xα

(5)

Clearly they have different dependent variables, so the systems are not identical.

AreSameE2,E2p,criterion=sameSystem

false

(6)

Since they are same as operator, they definitely have the same solutions.

AreSameE2,E2p,criteria=sameSolutions

true

(7)

Compatibility

• 

The AreSame command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LHPDE (Object overview)

LieAlgebrasOfVectorFields[LHPDE]

LHPDO (Object overview)

LieAlgebrasOfVectorFields[LHPDO]