IsSubspace
check if solution space of a LHPDE object is subspace of solution space of another LHPDE object.
Calling Sequence
Parameters
Description
Examples
Compatibility
IsSubspace( obj1, obj2)
obj1
-
a LHPDE object that is assumed to be in rif-reduced form (see IsRifReduced)
obj2
a LHPDE object
The IsSubspace method returns true if solution space of obj1 is a subspace of solution space of obj2. False otherwise.
More precisely, the method returns true if at each point x0, the local solution space of obj1 at x0 is a subspace of the local solution space of obj2 at x0.
The input arguments obj1 and obj2 need not have the same dependent variable names or dependencies.
This method is associated with the LHPDE object. For more detail, see Overview of the LHPDE object.
with⁡LieAlgebrasOfVectorFields:
C2≔LHPDE⁡diff⁡ξ⁡x,y,x,x=0,diff⁡ξ⁡x,y,x,y=0,diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=diff⁡ξ⁡x,y,x,indep=x,y,dep=ξ,η,inRifReducedForm=true
C2≔∂2∂x2ξ⁡x,y=0,∂2∂x∂yξ⁡x,y=0,∂2∂y2ξ⁡x,y=0,∂∂xη⁡x,y=−∂∂yξ⁡x,y,∂∂yη⁡x,y=∂∂xξ⁡x,y,indep=x,y,dep=ξ⁡x,y,η⁡x,y
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η,inRifReducedForm=true
E2≔∂2∂y2ξ⁡x,y=0,∂∂xη⁡x,y=−∂∂yξ⁡x,y,∂∂yη⁡x,y=0,∂∂xξ⁡x,y=0,indep=x,y,dep=ξ⁡x,y,η⁡x,y
IsSubspace⁡E2,C2
true
This LHPDE object's dependent variables have different names and dependencies.
E2p≔LHPDE⁡diff⁡α⁡y,y,y=0,diff⁡β⁡x,x=−diff⁡α⁡y,y,indep=x,y,dep=α,β,inRifReducedForm=true
E2p≔ⅆ2ⅆy2α⁡y=0,ⅆⅆxβ⁡x=−ⅆⅆyα⁡y,indep=x,y,dep=α⁡y,β⁡x
IsSubspace⁡E2p,C2
The IsSubspace command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LHPDE (Object overview)
LieAlgebrasOfVectorFields[LHPDE]
IsRifReduced
Download Help Document