Adjoint - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LinearAlgebra

  

Adjoint

  

compute the adjoint of a square Matrix

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Adjoint(A, options)

Parameters

A

-

square Matrix

options

-

(optional); constructor options for the result object

Description

• 

The Adjoint(A) function constructs Matrix M such that A·M=DeterminantA·IdentityMatrixDimensionsA.  This is known as the "adjugate", "adjunct" or classical adjoint of A.

• 

The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list.  If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).

• 

This function is part of the LinearAlgebra package, and so it can be used in the form Adjoint(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[Adjoint](..).

Examples

withLinearAlgebra:

A19,4,1|1,3,1|0,8,1:

C1AdjointA1,datatype=float

C111.−1.8.4.9.−72.−7.10.23.

(1)

A1·C1

103.0.0.0.103.0.0.0.103.

(2)

DeterminantA1

103

(3)

A2a,2a|3,a:

C2AdjointA2

C2a−32aa

(4)

A2·C2

a26a00a26a

(5)

DeterminantA2

a26a

(6)

References

  

de Boor, Carl. "An Empty Exercise." ACM SIGNUM Newsletter, Vol. 25 No. 2. (1990): 2-6.

See Also

LinearAlgebra

LinearAlgebra[Determinant]

LinearAlgebra[Dimension]

LinearAlgebra[IdentityMatrix]

Matrix