BezoutMatrix - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LinearAlgebra

  

BezoutMatrix

  

construct the Bezout Matrix of two polynomials

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

BezoutMatrix(P, Q, x, options)

Parameters

P, Q

-

polynomials in x

x

-

(optional) name; the variable in polynomials P and Q

options

-

(optional); constructor options for the result object

`method=symmetric`

-

(optional) use the symmetric form of the Bezout matrix

`methodoptions=increasing_degree`

-

(optional) order the Bezout matrix entries so that the null space is of the form 1, x, x^2, ... (the default is decreasing_degree)

Description

• 

The BezoutMatrix(P, Q) command constructs the Bezout Matrix of the univariate polynomials P and Q in the same indeterminate.

• 

The BezoutMatrix(P, Q, x) command is used when P and Q are multivariate polynomials; the main indeterminate of P and Q can be specified by using the optional parameter x.

• 

Let P=i=0npixi and Q=j=0mqjxj where mn.  Then B=BezoutMatrixP,Q,x has entries

Bmi+1,j=coeffr=imqmrxnrr=1ipnr+1xirr=inpnrxnrr=1iqmr+1xir,x,nj

for i=1..m and j=1..n

Bi,im1+j=qmj1

for i=m+1..n and j=1..m+1

Bi,j=0

for all other values of i and j

  

 

• 

If the option method=symmetric is given, then the matrix B is returned such that PxQηPηQxxη&equals;<&comma;η2&comma;η&comma;1&gt;B<&comma;x2&comma;x&comma;1&gt;&plus;.

• 

If the option methodoptions=increasing_degree is given, the ordering of the vectors in this quadratic form are reversed.

• 

If degree(Q) > degree(P), then BezoutMatrix(Q, P, x) is constructed.

• 

The determinant of the Bezout Matrix is equal to resultantP&comma;Q&comma;x.

• 

If the option method=symmetric is given, then the determinant of the Bezout Matrix is a multiple of resultantP&comma;Q&comma;x.

• 

The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list.  If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).

Examples

withLinearAlgebra&colon;

pa+bx+cx2

pcx2+bx+a

(1)

qd+ex+fx3

qfx3+ex+d

(2)

ABezoutMatrixp&comma;q&comma;x

Aafecebdcdbbfafecdccba

(3)

DeterminantA

a3f22a2cef+ab2ef+3abcdf+ac2e2b3dfbc2de+c3d2

(4)

resultantp&comma;q&comma;x

a3f22a2cef+ab2ef+3abcdf+ac2e2b3dfbc2de+c3d2

(5)

BBezoutMatrixp&comma;q&comma;x&comma;method=symmetric

Bfcbfafbfaf+ecdcafdcea+db

(6)

MatrixOptionsB&comma;shape

symmetric

(7)

BBezoutMatrixp&comma;q&comma;x&comma;method=symmetric&comma;shape=rectangular

Bfcbfafbfaf+ecdcafdcea+db

(8)

MatrixOptionsB&comma;shape

(9)

normalDeterminantBresultantp&comma;q&comma;x

f

(10)

See Also

LinearAlgebra

LinearAlgebra[Determinant]

LinearAlgebra[SylvesterMatrix]

resultant