LinearAlgebra[Generic]
MinorExpansion
compute the determinant of a square Matrix by minor expansion
Calling Sequence
Parameters
Description
Examples
MinorExpansion[R](A)
R
-
the domain of computation, a commutative ring
A
a square Matrix of values in R
The (indexed) parameter R, which specifies the domain of computation, a commutative ring, must be a Maple table/module which has the following values/exports:
R[`0`] : a constant for the zero of the ring R
R[`1`] : a constant for the (multiplicative) identity of R
R[`+`] : a procedure for adding elements of R (nary)
R[`-`] : a procedure for negating and subtracting elements of R (unary and binary)
R[`*`] : a procedure for multiplying elements of R (binary and commutative)
R[`=`] : a boolean procedure for testing if two elements of R are equal
with⁡LinearAlgebraGeneric:
R`0`,R`1`,R`+`,R`-`,R`=`≔0,1,`+`,`-`,`=`
R0,R1,R`+`,R`-`,R`=`≔0,1,`+`,`-`,`=`
R[`*`] := proc(f,g) expand(f*g) end: # polynomial multiplication
A≔Matrix⁡u,v,w,v,u,v,w,v,u
A≔uvwvuvwvu
MinorExpansionR⁡A
u3−2⁢u⁢v2−u⁢w2+2⁢v2⁢w
See Also
LinearAlgebra[Determinant]
LinearAlgebra[Generic][Determinant]
Download Help Document