Magma
Calling Sequence
Description
List of Magma Package Commands
Magma representation
Accessing the Magma Package Commands
Examples
Compatibility
Magma:-command(arguments)
command(arguments)
The Magma package is a collection of routines for working with small, finite magmas. A magma (sometimes also called a groupoid or a general binary system) is simply a set, together with a binary operation defined on that set.
The following is a list of the commands in the main Magma package.
AreIsomorphic
CayleyColorTable
Center
Centralizer
Commutant
CountIdempotents
CountSquares
DirectProduct
Enumerate
Format
GetIsomorphism
HasIdentity
HasLeftIdentity
HasLeftZero
HasRightIdentity
HasRightZero
HasZero
IdempotentElements
Identity
IsAlternative
IsAntiCommutative
IsAssociative
IsBand
IsCommutative
IsCrossedSet
IsDiassociative
IsDistributive
IsExtra
IsFlexible
IsGroup
IsIdempotent
IsIdentity
IsJordan
IsKei
IsLeftAlternative
IsLeftBol
IsLeftDistributive
IsLeftIdentity
IsLeftInvertible
IsLeftInvolutary
IsLeftQuasigroup
IsLeftSemimedial
IsLeftZero
IsLoop
IsMedial
IsMonoid
IsomorphicCopy
IsomorphismClasses
IsomorphismClassRepresentatives
IsParamedial
IsPower3Associative
IsPowerAssociative
IsQuandle
IsQuasigroup
IsQuasitrivial
IsRack
IsRightAlternative
IsRightBol
IsRightDistributive
IsRightIdentity
IsRightInvertible
IsRightInvolutary
IsRightQuasigroup
IsRightSemimedial
IsRightZero
IsSemigroup
IsSimple
IsSquag
IsSteiner
IsSubMagma
IsSzasz
IsZero
IsZeropotent
LeftIdentity
Nucleus
RandomMagma
Rank
RightIdentity
Squares
SubMagmaCayleyTable
SubMagmaClosure
TransportStructure
Unrank
Zero
A magma is a set together with a binary operation. Since, by transport of structure, every finite magma of order n is isomorphic to a magma on the set of integers from 1 to n, magmas are represented uniformly throughout the package by their Cayley tables as Arrays with entries from 1 to n. Thus, the (i,j) entry of the Cayley table is the result of multiplying the elements i and j.
Arrays representing Cayley tables of magmas are stored in row-major order (C_order) and have datatype integer[4].
Each command in the Magma package can be accessed by using either the long form or the short form of the command name in the command calling sequence. For example, if M is a magma you may use either Magma:-IsAssociative(M) or with(Magma); then IsAssociative(M).
with⁡Magma:
Enumerate⁡4,associative,commutative
58
Enumerate⁡4,associative,commutative,identity
19
Q4≔Enumerate⁡4,quandle,output=list
Q4≔1111222233334444,1111222234334344,1111222244333344,1111224334324324,1111322243332444,1122221144333344,1342421324313124
select⁡IsAssociative,Q4
1111222233334444
The Magma package was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Download Help Document