Symbolic Math
Back to Portal
Maple lets you manipulate formulas symbolically. For example, here we rearrange the Van der Waals formula
vdw≔P+n2aV2⋅V−n⋅b = n ⋅R⋅T:
solvevdw,P
n⁢R⁢T⁢V2+a⁢b⁢n2−V⁢a⁢nV2⁢−b⁢n+V
Maple contains much more symbolic math functionality. Explore a few more examples below by selecting an item from the list below
Factor a PolynomialExpand Functions and Distribute ProductsSort a list, Vector or 1D ArrayCollect Coefficients of Like PowersNumerator or Denominator of an ExpressionSeries ExpansionConvert Expression to Different FormFind Indeterminates of an ExpressionCreate a Sequence of Values or ExpressionsSolve a Differential EquationSubstitute an Expression into Another ExpressionDifferentiate and IntegrateLimit of an Expression
Factor a Polynomial
factor⁡6⁢x2+18⁢x−24
6⁢x+4⁢x−1
Details
Expand Functions and Distribute Products Over Sums
expand⁡x+1⁢x+2
x2+3⁢x+2
Sort the elements of a list, Vector, or one-dimensional Array
sort⁡2,1,3
1,2,3
sort⁡a,ba,aaa,aa,length
a,ba,aa,aaa
Collect coefficients of like powers
g:=x2⁢ⅇx−2⁢x⁢ⅇx+2⁢ⅇx−x2ⅇx−2⁢xⅇx−2ⅇx:
collect⁡g,ⅇx
x2−2⁢x+2⁢ⅇx+−x2−2⁢x−2ⅇx
Numerator or denominator of an expression
g≔1+xx12⁢y:
numerg
x+1
denomg
x⁢y
Series expansion
seriessinx,x=4,5
sin⁡4+cos⁡4⁢x−4−12⁢sin⁡4⁢x−42−16⁢cos⁡4⁢x−43+124⁢sin⁡4⁢x−44+Ox−45
Convert an expression to a different form
convert⁡1+2 I,polar
polar⁡5,arctan⁡2
g:=sinh⁡x+sin⁡x
g ≔ sinh⁡x+sin⁡x
convert⁡g,exp
12⁢ⅇx−12⁢ⅇ−x−12⁢I⁢ⅇI⁢x−ⅇ−I⁢x
Find indeterminates of an expression
indets⁡x⁢y+zx
x,y,z
indetssinx ⋅y
x,y,sin⁡x
indetssinx⋅y,name
x,y
Create a sequence of values or expressions
seqi2,i=1..10
1,4,9,16,25,36,49,64,81,100
seqi3, i in 2,1,3,6,7,7,4,2
1,8,27,64,216,343
seqi, i in black, red, purple,mauve
black,mauve,purple,red
Solve a differential equation symbolically
eq≔ⅆⅆtyt+sin2t=0,y0=0:
dsolveeq
y⁡t=14⁢sin⁡2⁢t−12⁢t
Substitute an expression for another expression
subsa=x+1,foo=a+sinxa2
foo=x+1+sin⁡xx+12
Differentiate or integrate an expression
diffx2,x
2⁢x
int2 x,x
x2
Details: diff, int
Limit of an expression
This the the gain of an op amp
gain:=−A⁢C1⁢R2⁢s+1A⁢C1⁢C2⁢R1⁢R2⁢s2+C1⁢C2⁢R1⁢R2⁢s2+A⁢C1⁢R1⁢s+A⁢C2⁢R1⁢s+C1⁢R1⁢s+C1⁢R2⁢s+C2⁢R1⁢s+1:
Compute the limit as A goes to infinity.
limitgain,A=infinity
−C1⁢R2⁢s+1R1⁢s⁢C1⁢C2⁢R2⁢s+C1+C2
Download Help Document