MaplePortal/TransferFunctions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : MaplePortal/TransferFunctions

 

Transfer Functions

Back to Portal

Introduction

 

The DynamicSystems package contains many tools for manipulating transfer functions, and visualizing their response in both the time and frequency domain.

 

Here, we demonstrate how to define a transfer function, generate a phase plot, and convert a transfer function to the time domain. Much more is possible.

 

Define a Transfer Function

 

restart:withDynamicSystems:

tfsas2+bs+c:

 

Define a transfer function object

sysTFTransferFunctiontf,parameters=a=1,b=1,c=1

sysTFTransfer Functioncontinuous1 output(s); 1 input(s)inputvariable=u1soutputvariable=y1s

(1)

 

 

Generate a Phase Plot

 

PhasePlotsysTF,parameters=a=3,b=4,c=5

 

Convert Transfer Function to a Differential Equation

 

sysDEDiffEquationtf

sysDEDiff. Equationcontinuous1 output(s); 1 input(s)inputvariable=u1toutputvariable=y1t

(2)

sysDE:-de

ⅆⅆtx1t=ax2tb,ⅆⅆtx2t=cbx1ta2bx2tabu1ta,y1t=x2tb

(3)

Discretization and Time-Domain Response to an Input Signal

 

Sampling time and number of samples

Ts0.025:Ns1000:

Generate the input signal

NoisyInputChirp1,0.02,0.01,hertz=true,discrete=true,samplecount=Ns,sampletime=Ts+Statistics:-SampleNormal0,0.05,Ns%T:

 

Discretize the transfer function

sysTFDToDiscretesysTF,Ts

sysTFDTransfer Functiondiscrete; sampletime = .25e-11 output(s); 1 input(s)inputvariable=u1zoutputvariable=y1z

(4)

Simulate and plot the response

OutputResponseSimulatesysTFD, NoisyInput, parameters=a=1,b=1,c=1

plotseqi1Ts,OutputResponsei,i=1..Ns

Applications

Amplifier Gain

Bandpass Filter Design

Inverted Pendulum