2-D Coordinate Systems
Main Concept
The Cartesian coordinate system is the default 2-D coordinate system used by Maple.
Additionally, Maple supports the following 2-D coordinate systems:
bipolar
cardioid
cassinian
elliptic
hyperbolic
invcassinian
invelliptic
logarithmic
logcosh
maxwell
parabolic
polar
rose
tangent
Conversions
The conversions from the various coordinate systems to cartesian (rectangular) coordinates in 2-space
u,v→x,y
are given by:
bipolar (Spiegel)
x=sinh⁡vcosh⁡v−cos⁡u
y=sin⁡ucosh⁡v−cos⁡u
x=u2−v22⁢u2+v22
y=u⁢vu2+v22
cartesian
x=u
y=v
cassinian (Cassinian-oval)
x=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1+ⅇu⁢cos⁡v+12
y=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1−ⅇu⁢cos⁡v−12
x=cosh⁡u⁢cos⁡v
y=sinh⁡u⁢sin⁡v
x=u2+v2+u
y=u2+v2−u
invcassinian (inverse Cassinian-oval)
x=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1+ⅇu⁢cos⁡v+12⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1
y=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1−ⅇu⁢cos⁡v−12⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1
invelliptic (inverse elliptic)
x=a⁢cosh⁡u⁢cos⁡vcosh⁡u2−sin⁡v2
y=a⁢sinh⁡u⁢sin⁡vcosh⁡u2−sin⁡v2
x=a⁢ln⁡u2+v2π
y=2⁢a⁢arctan⁡vuπ
logcosh (ln cosh)
x=a⁢ln⁡cosh⁡u2−sin⁡v2π
y=2⁢a⁢arctan⁡tanh⁡u⁢tan⁡vπ
x=a⁢u+1+ⅇu⁢cos⁡vπ
y=a⁢v+ⅇu⁢sin⁡vπ
x=u22−v22
y=u⁢v
x=u⁢cos⁡v
y=u⁢sin⁡v
x=u2+v2+uu2+v2
y=u2+v2−uu2+v2
x=uu2+v2
y=vu2+v2
Explore by choosing from the different functions and coordinate systems. Adjust the sliders to change parameters such as the domain and the linear factor of the selected function.
Function:
sin(x)cos(x)csc(x)sec(x)tan(x)x^2 - 4ln(x)exp(x)
Coordinate System:
bipolarcartesiancardioidcassinianelliptichyperbolicinvcassinianinvellipticlogarithmiclogcoshmaxwellparabolicpolarrosetangent
Lower limit of Domain, x1
Upper limit of Domain, x2
Linear Factor, a
More MathApps
MathApps/Graphing
Download Help Document