Hyperbolic Functions
Main Concept
There are a total of six hyperbolic functions: sinhx, coshx, tanhx, cschx, sechx, cothx
Summary of the Hyperbolic Function Properties
Name
Notation
Equivalence
Derivative
Special properties
Hyperbolic Sine
sinh(x)
ex − e−x2
ddxsinhx = coshx
sinh0 = 0
Hyperbolic Cosine
cosh(x)
ex + e−x2
ddxcoshx = sinhx
cosh0 = 1
Hyperbolic Tangent
tanh(x)
sinhxcoshx= ex − e−xex + e−x = e2x−1e2x + 1
ddxtanhx = sech2x
tanh0 = 0
Hyperbolic Cosecant
csch(x)
sinhx−1 = 2ex − e−x
ddxcschx = −cothxcschx
Hyperbolic Secant
sech(x)
coshx−1 = 2ex + e−x
ddxsechx = −sechxtanhx
sech0 = 1
Hyperbolic Cotangent
coth(x)
coshxsinhx= ex + e−xex − e−x = e2x+1e2x − 1
ddxcothx = −csch2x
cothx2−cothx = cschx
Explore the properties of the Hyperbolic Functions.
More MathApps
MathApps/Trigonometry
Download Help Document