Properties of Logarithms - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Properties of Logarithms

Properties of Logarithmic Functions

Let b>0, b1, let x and y be positive numbers, and let r be any real number. Then the following properties hold:

 

1. 

The range of logbx is all real numbers.

2. 

The domain of logbx is all positive real numbers.

3. 

For b&gt;1, logbx&gt;0 for x&gt;1 and logbx<0 for 0<x<1; for 0<b<1 the inequalities reverse.

4. 

logb1&equals;0

5. 

logbxy&equals;logbx&plus;logby

6. 

logbxy&equals;logbxlogby

7. 

logb1x&equals;logbx

8. 

logbxr&equals;r logbx

9. 

If x&gt;y and b&gt;1 then logbx&gt;logby. If x&gt;y and 0<b<1 then logbx<logby. That is, logbx is an increasing function if b&gt;1 and a decreasing function if 0<b<1.

10. 

x&equals;logby exactly when y&equals;bx. That is, the logarithmic and exponential functions with the same base are inverses of each other. In particular, logbbx&equals;x&equals;blogbx.

Using the properties of logarithms

The calculator shown here is missing a few keys (no multiplication or division keys). Nonetheless, it is still possible to perform any arithmetic calculation involving only +, -, ×, or ÷ operations. This is because the calculator has "10 to the power of" and "logarithm base 10" keys.

 

Try it out. Can you compute these values?

• 

4/3

• 

93123×23485

• 

5217.308&plus;234.33×941.226177.332

The "log" button represents the base 10 logarithmic function. The calculator displays answers to 2 decimal places.

 

    

   

More MathApps

MathApps/FunctionsAndRelations