MeijerG
Meijer G function
Calling Sequence
Parameters
Description
Examples
References
MeijerG([as, bs], [cs, ds], z)
as
-
list of the form [a1, ..., am]; first group of numerator Γ parameters
bs
list of the form [b1, ..., bn]; first group of denominator Γ parameters
cs
list of the form [c1, ..., cp]; second group of numerator Γ parameters
ds
list of the form [d1, ..., dq]; second group of denominator Γ parameters
z
expression
The Meijer G function is defined by the inverse Laplace transform
MeijerGas,bs,cs,ds,z=12⁢π⁢I⁢∮LΓ1−as+y⁢Γcs−yΓbs−y⁢Γ1−ds+y⁢zyⅆy
where
as=a1,...,am,Γ⁡1−as+y=Γ⁡1−a1+y⁢...⁢Γ⁡1−am+y
bs=b1,...,bn,Γ⁡bs−y=Γ⁡b1−y⁢...⁢Γ⁡bn−y
cs=c1,...,cp,Γ⁡cs−y=Γ⁡c1−y⁢...⁢Γ⁡cp−y
ds=d1,...,dq,Γ⁡1−ds+y=Γ⁡1−d1+y⁢...⁢Γ⁡1−dq+y
and L is one of three types of integration paths Lγ+∞⁢I, L∞, and L−∞.
Contour L∞ starts at ∞+I⁢φ1 and finishes at ∞+I⁢φ2⁡φ1<φ2.
Contour L−∞ starts at −∞+I⁢φ1 and finishes at −∞+I⁢φ2⁡φ1<φ2.
Contour Lγ+∞⁢I starts at γ+−∞ and finishes at γ+∞⁢I.
All the paths L∞, L−∞, and Lγ+∞⁢I put all cj+k poles on the right and all other poles of the integrand (which must be of the form aj−1+k) on the left.
The classical notation used to represent the MeijerG function relates to the notation used in Maple by
Gpqmn(z|⁢b1,⁢…,⁢bm,bm+1,⁢…,⁢bqa1,⁢…,⁢an,an+1,⁢…,⁢ap)=MeijerGa1,⁢…,⁢an,an+1,⁢…,⁢ap,b1,⁢…,⁢bm,bm+1,⁢…,⁢bq,z
Note: See Prudnikov, Brychkov, and Marichev.
The MeijerG function satisfies the following qth-order linear differential equation
−1p−m−n⁢x⁢∏i=1p⁡x⁢D−ai+1−∏i=1q⁡x⁢D−bi⁢y⁡x=0
where D=ddx and p is less than or equal to q.
MeijerG⁡1,1,1,1,,,4,3,2,2,π
evalf⁡
8.898308178×10−28+9.796677125×10−26⁢I
s≔MeijerG⁡,,0,,z⁢1+2⁢I
s≔MeijerG⁡,,0,,1+2⁢I⁢z
convert⁡s,StandardFunctions
ⅇ−1−2⁢I⁢z
convert⁡exp⁡z,MeijerG,include=elementary
MeijerG⁡,,0,,−z
convert⁡sin⁡z,MeijerG,include=elementary
π⁢MeijerG⁡,,12,0,z24
convert⁡cos⁡z,MeijerG,include=elementary
π⁢MeijerG⁡,,0,12,z24
convert⁡Ei⁡z,MeijerG
−MeijerG⁡,1,0,0,,−z
Prudnikov, A. P.; Brychkov, Yu; and Marichev, O. Integrals and Series, Volume 3: More Special Functions. New York: Gordon and Breach Science Publishers, 1990.
See Also
Appell
convert/StandardFunctions
dpolyform
Heun
hypergeom
hyperode
Download Help Document