MultiZeta
the multiple zeta function
Calling Sequence
Parameters
Description
Examples
References
Compatibility
MultiZeta(m1,m2,...,mn)
m1,m2,...,mn
-
positive integers
MultiZeta is an implementation of multiple zeta values, also known as the generalized Euler sums over i1>i2>...>i__n >0
MultiZeta⁡m1,...,mn=∑i ∏1i1m1,...,1inmn
The sum converges for all positive integer arguments, except when the first argument equals one, for instance as in MultiZeta(1,2,3), in which case the function diverges.
With no arguments, MultiZeta() is defined as equal to 1.
For one argument, MultiZeta reduces to the Riemann Zeta function:
%MultiZeta43=MultiZeta43
MultiZeta⁡43=ζ⁡43
The more relevant special cases are computed automatically, such as that of two identical arguments, here using a more compact input syntax
%MultiZeta=MultiZeta⁡27,27
MultiZeta⁡27,27=ζ⁡2722−ζ⁡542
and of two arguments summing to an odd number
%MultiZeta=MultiZeta11,8;
MultiZeta⁡11,8=−75583⁢ζ⁡192+9724⁢π2⁢ζ⁡173+4433⁢π4⁢ζ⁡1590+286⁢π6⁢ζ⁡13315+121⁢π8⁢ζ⁡119450+8⁢π10⁢ζ⁡993555
All Multiple Zeta values of weight less than or equal to seven, can be written solely in terms of classical Zeta values:
%MultiZeta=MultiZeta2,1,4
MultiZeta⁡2,1,4=7⁢π4⁢ζ⁡3360−11⁢π2⁢ζ⁡512+61⁢ζ⁡78
The multiple Zeta values are a special case of the multiple polylogarithm:
%MultiPolylog=MultiPolylog2,3,4,5,1,1,1,1;
MultiPolylog⁡2,3,4,5,1,1,1,1=MultiZeta⁡2,3,4,5
The multiple zeta values obey a large number of identities, primarily the stuffle relation:
MultiZeta⁡7,9⁢MultiZeta⁡6
MultiZeta⁡7,9⁢π6945
MultiZeta⁡7,9,6+MultiZeta⁡7,6,9+MultiZeta⁡6,7,9+MultiZeta⁡13,9+MultiZeta⁡7,15
Up to 5 digits,
evalf5=
0.0084952=0.0084952
and the duality
MultiZeta2,3,4
MultiZeta⁡2,3,4
MultiZeta2,1,1,2,1,2
MultiZeta⁡2,1,1,2,1,2
evalf=
0.06781184623=0.06781184623
[1] J. Bluemlein, D.J. Broadhurst, J.A.M. Vermaseren. "The Multiple Zeta Value Data Mine", Comput.Phys.Commun. Vol. 181 (2010): p. 582-625.
The MultiZeta command was introduced in Maple 2018.
See Also
GeneralizedPolylog
MultiPolylog
Zeta
Download Help Document