NumberTheory
HomogeneousDiophantine
solution to Minkowski's linear forms
Calling Sequence
Parameters
Description
Examples
Compatibility
HomogeneousDiophantine(ineqs, xvars, yvars)
HomogeneousDiophantine(real_cfs, real_errors)
HomogeneousDiophantine(padic_cfs, adicities, padic_errors)
HomogeneousDiophantine(real_cfs, real_errors, padic_cfs, adicities, padic_errors)
ineqs
-
inequality or set of inequalities with abs or valuep
xvars
name or set of names
yvars
real_cfs, padic_cfs
convertible to a Matrix of real numbers
adicities
convertible to a Vector of prime numbers
real_errors
convertible to a Vector of real numbers
padic_errors
convertible to a Vector of positive integers
The HomogeneousDiophantine function finds a solution x1,…,xn,y1,…,ym over the integers to a set of inequalities of the form
a1,1⁢x1+a1,n⁢xn+...−y1≤err1
...
aj,1⁢x1+aj,n⁢xn+...−yj≤errj
or
padic:−valuep⁡aj+1,1⁢x1+aj+1,n⁢xn+...−yj+1,pj+1≤pj+1−errj+1
padic:−valuep⁡am,1⁢x1+am,n⁢xn+...−ym,pm≤pm−errm
where padic:−valuep is the p-adic valuation.
The inequalities can be described explicitly, corresponding to the first calling sequence, or implicitly, corresponding to the other calling sequences.
If the first calling sequence is used, then the return value is of the form
x1=s1,...,xn=sn,y1=t1,...,ym=tm
If the other calling sequences are used, then the return value is a two-element list corresponding to the x values and the y values,
s1,...,sn,t1,...,tm
with⁡NumberTheory:
HomogeneousDiophantine⁡abs⁡sqrt⁡2⁢x−y≤10−3,x,y
x=5741,y=8119
with⁡padic:
HomogeneousDiophantine⁡abs⁡313⁢z1+π⁢z2−s2≤10−4,abs⁡exp⁡1⁢z1+212⁢z2−s1≤10−2,z1,z2,s1,s2
z1=7484,z2=−2534,s2=2833,s1=16760
An equivalent matrix form calling sequence is:
HomogeneousDiophantine⁡exp⁡1,212,313,π,10−2,10−4
7484,−2534,16760,2833
The solutions may be different but both are valid.
Both abs and valuep may be used in the same system.
HomogeneousDiophantine⁡abs⁡log⁡2⁢x+log⁡5⁢y+312⁢z−r≤10−2,valuep⁡sin⁡5⁢x+1log⁡7⁢y+exp⁡5⁢z−v,5≤5−9,x,y,z,r,v
x=−3050,y=−2175,z=4450,r=2093,v=−13
The error list for the p-adic cases are negatives of the exponents on the adicities.
HomogeneousDiophantine⁡log⁡2,log⁡5,312,10−2,sin⁡5,1log⁡7,exp⁡5,5,9
−3050,−2175,4450,2093,−13
The NumberTheory[HomogeneousDiophantine] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
isolve
NumberTheory[InhomogeneousDiophantine]
padic[valuep]
Download Help Document