NumberTheory
NumberOfIrreduciblePolynomials
number of monic irreducible polynomials
Calling Sequence
Parameters
Description
Examples
Compatibility
NumberOfIrreduciblePolynomials(n, p)
NumberOfIrreduciblePolynomials(n, p, m)
n
-
non-negative integer
p
power of prime number
m
(optional) positive integer; defaults to 1
The NumberOfIrreduciblePolynomials(n, p, m) command computes the number of monic irreducible univariate polynomials of degree n over a finite field of order pm.
An explicit formula for this function is 1n∑d|nμdpmnd where the sum is over the divisors of n and μ is the Moebius function.
with⁡NumberTheory:
NumberOfIrreduciblePolynomials⁡3,5
40
NumberOfIrreduciblePolynomials⁡1,24
16
The number of linear, quadratic, cubic, and quartics over GF⁡p.
seq⁡NumberOfIrreduciblePolynomials⁡n,p,n=1..4
p,12⁢p2−12⁢p,13⁢p3−13⁢p,14⁢p4−14⁢p2
The number of cubics over GF⁡pm.
NumberOfIrreduciblePolynomials⁡3,p,m
pm33−pm3
The NumberTheory[NumberOfIrreduciblePolynomials] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
Download Help Document