NumberTheory
PseudoPrimitiveRoot
pseudo primitive root modulo n
Calling Sequence
Parameters
Description
Examples
Compatibility
PseudoPrimitiveRoot(n, options)
n
-
positive integer
options
(optional) at most one of greaterthan = m or ith = i, where m is a non-negative integer and i is a positive integer
The PseudoPrimitiveRoot(n) command returns the smallest pseudo primitive root modulo n, if it exists.
The PseudoPrimitiveRoot(n, greaterthan = m) command returns the smallest pseudo primitive root modulo n greater than m.
The PseudoPrimitiveRoot(n, ith = i) command returns the ith smallest pseudo primitive root modulo n.
If the required pseudo primitive root does not exist, then an error message is displayed.
A pseudo primitive root is an integer y such that y and n are coprime, and there does not exist an integer x such that xr=ymodn where r is a divisor of n not equal to 1.
If a primitive root modulo n exists, then the pseudo primitive roots are exactly the primitive roots.
with⁡NumberTheory:
PseudoPrimitiveRoot⁡7
3
PseudoPrimitiveRoot⁡2662,greaterthan=2342
2345
There does not exist a primitive root modulo 8 but there are three pseudo primitive roots modulo 8.
PrimitiveRoot⁡8
Error, (in NumberTheory:-PrimitiveRoot) there does not exist a primitive root modulo 8
seq⁡PseudoPrimitiveRoot⁡8,ith=i,i=1..3
3,5,7
An error message is displayed when the desired pseudo primitive root does not exist.
PseudoPrimitiveRoot⁡8,ith=4
Error, (in NumberTheory:-PseudoPrimitiveRoot) there exist only 3 pseudo primitive roots modulo 8
PseudoPrimitiveRoot⁡8,greaterthan=7
Error, (in NumberTheory:-PseudoPrimitiveRoot) there does not exist a pseudo primitive root modulo 8 greater than 7
The NumberTheory[PseudoPrimitiveRoot] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
NumberTheory[MultiplicativeOrder]
NumberTheory[PrimitiveRoot]
Download Help Document