OreTools
AdjointRing
construct the adjoint of a given Ore polynomial ring
AdjointOrePoly
compute the adjoint Ore polynomial in a given Ore ring
Calling Sequence
Parameters
Description
Examples
AdjointRing(A)
AdjointOrePoly(Poly, A)
Poly
-
Ore polynomial; to define an Ore polynomial, use the OrePoly structure.
A
Ore ring; to define an Ore ring, use the SetOreRing function.
The AdjointRing(A) calling sequence constructs the adjoint of A.
The AdjointOrePoly(Poly, A) calling sequence computes the adjoint Ore polynomial of the polynomial Poly in A.
An Ore polynomial ring is defined vi SetOreRing. For a description of the adjoint of an Ore polynomial ring, see OreAlgebra.
with⁡OreTools:
with⁡OreToolsProperties:
Define the shift polynomial ring.
A≔SetOreRing⁡n,shift
A≔UnivariateOreRing⁡n,shift
Construct the adjoint Ore polynomial ring B of A.
B≔AdjointRing⁡A
B≔Adj⁡UnivariateOreRing⁡n,shift
Construct the adjoint Ore polynomial ring C of B. The ring C must be the same as A.
C≔AdjointRing⁡B
C≔UnivariateOreRing⁡n,shift
GetSigma⁡A⁡s⁡n,n=GetSigma⁡C⁡s⁡n,n
s⁡n+1=s⁡n+1
GetSigmaInverse⁡A⁡s⁡n,n=GetSigmaInverse⁡C⁡s⁡n,n
s⁡n−1=s⁡n−1
Getdelta⁡A⁡s⁡n,n=Getdelta⁡C⁡s⁡n,n
0=0
Define two Ore polynomials P1 and P2 in A.
P1≔OrePoly⁡n+1,n;P2≔OrePoly⁡1,n+1
P1≔OrePoly⁡n+1,n
P2≔OrePoly⁡1,n+1
Compute the adjoint operators of P1 and P2 in A.
adjP1≔AdjointOrePoly⁡P1,A
adjP1≔OrePoly⁡n+1,n−1
adjP2≔AdjointOrePoly⁡P2,A
adjP2≔OrePoly⁡1,n
Multiply adjP1 and adjP2 in the adjoint B of A.
Multiply⁡adjP1,adjP2,B
OrePoly⁡n+1,n2+2⁢n−1,n−12
See Also
OreTools/OreAlgebra
OreTools/OrePoly
OreTools[Properties]
OreTools[SetOreRing]
Download Help Document