SymmetryTest - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


PDEtools

  

SymmetryTest

  

tests whether a given list of infinitesimals represents a symmetry of a given PDE system.

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

SymmetryTest(S, PDESYS, DepVars)

Parameters

S

-

a list with the infinitesimals of a symmetry generator or the corresponding infinitesimal generator operator

PDESYS

-

a PDE or a set or list of them; it can include ODEs and non-differential equations

DepVars

-

optional - may be required; a function or a list of them indicating the dependent variables of the problem

Description

• 

SymmetryTest tests whether a symmetry, given as a list of infinitesimals S or as the corresponding infinitesimal generator differential operator, is a symmetry of a given PDE system PDESYS; if so, S satisfies the determining PDE for PDESYS.

• 

If DepVars is not specified, SymmetryTest will consider all the differentiated unknown functions in PDESYS as unknown of the problems.

Examples

Consider the wave equation in four dimensions to avoid redundant typing on input and on the display use diff_table and declare

withPDEtools:

Udiff_tableux,y,z,t:

declareU

ux,y,z,twill now be displayed asu

(1)

pde1Ux,x+Uy,y+Uz,zUt,t=0

pde1ux,x+uy,y+uz,zut,t=0

(2)

Compute the infinitesimals of point symmetry transformations leaving invariant pde[1] and test for correctness the first list

declare_ξ,_ηx,y,z,t,u

_ξx,y,z,t,uwill now be displayed as_ξ

_ηx,y,z,t,uwill now be displayed as_η

(3)

SInfinitesimalspde1

S_ξx=0,_ξy=1,_ξz=0,_ξt=0,_ηu=0,_ξx=0,_ξy=0,_ξz=1,_ξt=0,_ηu=0,_ξx=0,_ξy=0,_ξz=0,_ξt=1,_ηu=0,_ξx=1,_ξy=0,_ξz=0,_ξt=0,_ηu=0,_ξx=0,_ξy=t,_ξz=0,_ξt=y,_ηu=0,_ξx=0,_ξy=0,_ξz=t,_ξt=z,_ηu=0,_ξx=t,_ξy=0,_ξz=0,_ξt=x,_ηu=0,_ξx=x,_ξy=y,_ξz=z,_ξt=t,_ηu=0,_ξx=0,_ξy=0,_ξz=0,_ξt=0,_ηu=u,_ξx=0,_ξy=z,_ξz=y,_ξt=0,_ηu=0,_ξx=z,_ξy=0,_ξz=x,_ξt=0,_ηu=0,_ξx=y,_ξy=x,_ξz=0,_ξt=0,_ηu=0,_ξx=xz,_ξy=zy,_ξz=z22+t22x22y22,_ξt=zt,_ηu=uz,_ξx=xy,_ξy=y22+t22x22z22,_ξz=zy,_ξt=yt,_ηu=uy,_ξx=tx,_ξy=yt,_ξz=zt,_ξt=t22+x22+y22+z22,_ηu=ut,_ξx=x22t22+y22+z22,_ξy=xy,_ξz=xz,_ξt=tx,_ηu=ux

(4)

SymmetryTestS1,pde1

0

(5)

Test all the lists in one step

mapSymmetryTest,S,pde1

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

(6)

SymmetryTest can also test dynamical symmetries, that is, symmetries where the infinitesimals depend on derivatives of the unknown functions of the problem. Consider for instance the sine-Gordon equation

declareux,y

ux,ywill now be displayed asu

(7)

SGEdiffux,y,x,y=sinux,y

SGEux,y=sinu

(8)

The following list of infinitesimals represent a symmetry of SGE

S_ξ1=0,_ξ2=0,_η1=u1,1,1+12u13

S_ξ1=0,_ξ2=0,_η1=u1,1,1+u132

(9)

FromJetS,ux,y

_ξ1=0,_ξ2=0,_η1=ux,x,x+ux32

(10)

SymmetryTestS,SGE

0

(11)

See Also

declare

DeterminingPDE

diff_table

Infinitesimals

PDEtools

SymmetryTransformation