PDEtools
SymmetryTest
tests whether a given list of infinitesimals represents a symmetry of a given PDE system.
Calling Sequence
Parameters
Description
Examples
SymmetryTest(S, PDESYS, DepVars)
S
-
a list with the infinitesimals of a symmetry generator or the corresponding infinitesimal generator operator
PDESYS
a PDE or a set or list of them; it can include ODEs and non-differential equations
DepVars
optional - may be required; a function or a list of them indicating the dependent variables of the problem
SymmetryTest tests whether a symmetry, given as a list of infinitesimals S or as the corresponding infinitesimal generator differential operator, is a symmetry of a given PDE system PDESYS; if so, S satisfies the determining PDE for PDESYS.
If DepVars is not specified, SymmetryTest will consider all the differentiated unknown functions in PDESYS as unknown of the problems.
Consider the wave equation in four dimensions to avoid redundant typing on input and on the display use diff_table and declare
with⁡PDEtools:
U≔diff_table⁡u⁡x,y,z,t:
declare⁡U
u⁡x,y,z,t⁢will now be displayed as⁢u
pde1≔Ux,x+Uy,y+Uz,z−Ut,t=0
pde1≔ux,x+uy,y+uz,z−ut,t=0
Compute the infinitesimals of point symmetry transformations leaving invariant pde[1] and test for correctness the first list
declare⁡_ξ,_η⁡x,y,z,t,u
_ξ⁡x,y,z,t,u⁢will now be displayed as⁢_ξ
_η⁡x,y,z,t,u⁢will now be displayed as⁢_η
S≔Infinitesimals⁡pde1
S≔_ξx=0,_ξy=1,_ξz=0,_ξt=0,_ηu=0,_ξx=0,_ξy=0,_ξz=1,_ξt=0,_ηu=0,_ξx=0,_ξy=0,_ξz=0,_ξt=1,_ηu=0,_ξx=1,_ξy=0,_ξz=0,_ξt=0,_ηu=0,_ξx=0,_ξy=t,_ξz=0,_ξt=y,_ηu=0,_ξx=0,_ξy=0,_ξz=t,_ξt=z,_ηu=0,_ξx=t,_ξy=0,_ξz=0,_ξt=x,_ηu=0,_ξx=x,_ξy=y,_ξz=z,_ξt=t,_ηu=0,_ξx=0,_ξy=0,_ξz=0,_ξt=0,_ηu=u,_ξx=0,_ξy=z,_ξz=−y,_ξt=0,_ηu=0,_ξx=z,_ξy=0,_ξz=−x,_ξt=0,_ηu=0,_ξx=y,_ξy=−x,_ξz=0,_ξt=0,_ηu=0,_ξx=x⁢z,_ξy=z⁢y,_ξz=z22+t22−x22−y22,_ξt=z⁢t,_ηu=−u⁢z,_ξx=x⁢y,_ξy=y22+t22−x22−z22,_ξz=z⁢y,_ξt=y⁢t,_ηu=−u⁢y,_ξx=t⁢x,_ξy=y⁢t,_ξz=z⁢t,_ξt=t22+x22+y22+z22,_ηu=−u⁢t,_ξx=−x22−t22+y22+z22,_ξy=−x⁢y,_ξz=−x⁢z,_ξt=−t⁢x,_ηu=u⁢x
SymmetryTest⁡S1,pde1
0
Test all the lists in one step
map⁡SymmetryTest,S,pde1
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
SymmetryTest can also test dynamical symmetries, that is, symmetries where the infinitesimals depend on derivatives of the unknown functions of the problem. Consider for instance the sine-Gordon equation
declare⁡u⁡x,y
u⁡x,y⁢will now be displayed as⁢u
SGE≔diff⁡u⁡x,y,x,y=sin⁡u⁡x,y
SGE≔ux,y=sin⁡u
The following list of infinitesimals represent a symmetry of SGE
S≔_ξ1=0,_ξ2=0,_η1=u1,1,1+12⁢u13
S≔_ξ1=0,_ξ2=0,_η1=u1,1,1+u132
FromJet⁡S,u⁡x,y
_ξ1=0,_ξ2=0,_η1=ux,x,x+ux32
SymmetryTest⁡S,SGE
See Also
declare
DeterminingPDE
diff_table
Infinitesimals
SymmetryTransformation
Download Help Document