Physics[FeynmanIntegral][Parametrize] - parametrize a Feynman integral, as the ones returned by the FeynmanDiagrams command, appearing in the expansion of the Scattering matrix in momentum representation
Calling Sequence
Parametrize(inert_Feynman_integral, options)
Parameters
inert_Feynman_integral
-
the inert form of Feynman integral, that is a function whose name is %FeynmanIntegral, as the ones returned by FeynmanDiagrams when working in momentum representation.
Options
kindofparameters = ... : the kind of auxiliary parameters - Feynman (default) or α - used to parametrize Feynman integrals.
numberofpropagators = ... : the right-hand side a non-assigned name to which the number of propagators parametrized will be assigned.
parameters = ... : the right-hand side a non-assigned name to which the parameters introduced will be assigned.
quiet = ... : the right-hand side can be true or false (default), to display or not information related to matching keywords
returnintegrand = ... : the right-hand side can be true or false (default). if set to true, Parametrize will return only the integrand of the parametrized Feynman integral, omitting the integrals over the parameters. This option is frequently used together with the parameters option to also get the parameters introduced.
All the optional keywords that can have the value true on the right-hand side can be passed just as themselves, not as an equation, representing the value true. For example quiet is the same as quiet = true. Also, you don't need to use the exact spelling of any of these keywords - any unambiguous portion of them suffices, e.g. perform for performmomentumintegration.
Description
Parametrize receives a Feynman integral constructed using the inert function %FeynmanIntegral, as the ones returned by the FeynmanDiagrams command, and rewrites the integrand replacing the propagators by parametrized integrals, using Feynman (default) or α parameters. This is the first step performed by the FeynmanIntegral command towards the computation of the integral using dimensional regularization.
Only propagators involving a loop momentum (the integration variable of the %FeynmanIntegral), of the form p__n, so the letter p followed by two underscores and where n is a positive integer, are included in the parametrization. The output is the parametrized form of the integral, or, if specified, only of the integrand.
The available parametrization schemes introduce either Feynman or alpha (also known as Schwinger) parameters. The Feynman parametrization of a product of L denominators A_l is [1]
where the ξi are the Feynman parameters, and the αi and λj are, respectively, the α parameters and the λ (possibly complex) exponents.
Examples
with(Physics):
with(FeynmanIntegral);
Evaluate,ExpandDimension,FromAbstractRepresentation,Parametrize,Series,SumLookup,TensorBasis,TensorReduce,ToAbstractRepresentation,ε,ϵ
interface(imaginaryunit = i):
%FeynmanIntegral(1/((-m^2 + p__1^2 + i * epsilon)*(p__1^2 + i * epsilon)), p__1);
∫1−m2+p__12+ⅈ⁢ε⁢p__12+ⅈ⁢εⅆp__1 4
Parametrize((2));
Parametrize((2), integrand);
* Partial match of 'integrand' against keyword 'returnintegrand'
δ⁡−1+ξ__1+ξ__2ξ__1⁢−m2+p__12+ξ__2⁢p__122
Parametrize((2), kindofparameters = alpha);
∫∫0∞∫0∞−ⅇⅈ⁢p__12⁢α__1+α__2⁢ⅇ−ⅈ⁢α__1⁢m2ⅆα__1ⅆα__2ⅆp__1 4
Parametrize((2), propagators = 'LP');
* Partial match of 'propagators' against keyword 'propagatorslist'
The list of propagators:
LP;
−m2+p__12,p__12
An example departing from an interaction Lagrangian
L := lambda*phi(X)^3;
L≔λ⁢φ⁡X3
A process with one incoming and one outgoing particle a 1-loop
FeynmanDiagrams(L, incomingparticles = [phi], outgoingparticles = [phi], numberofloops = 1, diagrams);
∫9⁢λ2⁢δ⁡−P__2+P__18⁢π3⁢E__1⁢E__2⁢P__1+p__22−m__φ2+ⅈ⁢ε⁢p__22−m__φ2+ⅈ⁢εⅆp__2 4
To Parametrize this Feynman integral using Feynman parameters, use
Parametrize((9));
Parametrizing the integral is the first step towards its evaluation. Within the FeynmanIntegral package, to evaluate the integral, using dimensional regularization, you can use Evaluate
Evaluate((9));
9⁢ⅈ8⁢π−1−ϵ⁢λ2⁢δ⁡−P__2+P__1⁢∑n=0∞⁡Γ⁡ϵ+n⁢P__12⁢n⁢Γ⁡n+1⁢m__φ−2⁢ϵ−2⁢nΓ⁡2⁢n+2E__1⁢E__2
Evaluate((9), expanddimension);
9⁢ⅈ8⁢λ2⁢δ⁡−P__2+P__1π⁢E__1⁢E__2⁢ϵ−1+−9⁢ⅈ8⁢λ2⁢δ⁡−P__2+P__1⁢2⁢ln⁡m__φ+γ−∑n=1∞⁡Γ⁡n⁢P__12⁢n⁢Γ⁡n+1m__φ2⁢n⁢Γ⁡2⁢n+2+ln⁡πE__1⁢E__2⁢π+O⁡ϵ
To remove the series structure of this result and have it expressed as a polynomial see convert/polynomial.
The same process at two loops
FeynmanDiagrams(L, incomingparticles = [phi], outgoingparticles = [phi], numberofloops = 2);
2⁢∫∫81⁢ⅈ64⁢λ4⁢δ⁡−P__2+P__1π7⁢E__1⁢E__2⁢P__2+p__4+p__52−m__φ2+ⅈ⁢ε⁢P__2−P__1+p__4+p__52−m__φ2+ⅈ⁢ε⁢p__4+p__52−m__φ2+ⅈ⁢ε⁢p__42−m__φ2+ⅈ⁢ε⁢p__52−m__φ2+ⅈ⁢εⅆp__4 4ⅆp__5 4+∫∫81⁢ⅈ64⁢λ4⁢δ⁡−P__2+P__1π7⁢E__1⁢E__2⁢−P__1+p__4+p__52−m__φ2+ⅈ⁢ε⁢p__4+p__52−m__φ2+ⅈ⁢ε⁢P__2−p__42−m__φ2+ⅈ⁢ε⁢p__42−m__φ2+ⅈ⁢ε⁢p__52−m__φ2+ⅈ⁢εⅆp__4 4ⅆp__5 4+∫∫81⁢ⅈ64⁢λ4⁢δ⁡−P__2+P__1π7⁢E__1⁢E__2⁢−P__1+P__2−p__4+p__52−m__φ2+ⅈ⁢ε⁢−P__2+p__4−p__52−m__φ2+ⅈ⁢ε⁢P__2−p__42−m__φ2+ⅈ⁢ε⁢p__42−m__φ2+ⅈ⁢ε⁢p__52−m__φ2+ⅈ⁢εⅆp__4 4ⅆp__5 4
To Parametrize each Feynman integral within this expression you can use subsindets
subsindets((13), specfunc(%FeynmanIntegral), Parametrize);
See Also
convert/polynomial, Dgamma, Evaluate, FeynmanDiagrams, FeynmanIntegral[Overview], Physics, Physics conventions, Physics examples, Physics Updates, Tensors - a complete guide, Mini-Course Computer Algebra for Physicists, Setup, TensorReduce
References
[1] Smirnov, V.A., Feynman Integral Calculus. Springer, 2006.
[2] Weinberg, S., The Quantum Theory Of Fields. Cambridge University Press, 2005.
[3] Bogoliubov, N.N., and Shirkov, D.V. Quantum Fields. Benjamin Cummings, 1982.
Compatibility
The Physics[FeynmanIntegral][Parametrize] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
Download Help Document