Physics[Weyl] - The Weyl tensor and the Weyl scalars for the tetrad set
Physics[Tetrads][WeylScalars] - The Weyl scalars for any given tetrad
Calling Sequence
Weyl[alpha, beta, mu, nu]
Weyl[keyword]
WeylScalars(tetrad)
Parameters
alpha, beta, mu, nu
-
the indices, as names representing integer numbers between 0 and the spacetime dimension, they can also be the numbers themselves
keyword
can be any of: scalars, definition, scalarsdefinition, nonzero, ~, to respectively get the Weyl scalars, definition of the tensor or of its scalars, a set with the nonzero components, or an Array with the contravariant components
tetrad
optional, related to Tetrads:-WeylScalar, tetrad is any 4 x 4 matrix for which Tetrads:-IsTetrad returns true.
Description
The Weyl[alpha, beta, mu, nu], displayed as C__α,β,μ,ν, is a computational representation for the Weyl tensor, defined in terms of the Riemann, Ricci and the spacetime metric g_ tensors as
Cα,β,μ,ν=Rα,β,μ,ν+1n−2⁢−Rα,μ⁢gβ,ν+Rα,ν⁢gβ,μ+Rβ,μ⁢gα,ν−Rβ,ν⁢gα,μ+1n−1⁢gα,μ⁢gβ,ν−gα,ν⁢gβ,μ⁢Rρ⁢⁢ρ
where n is the dimension of spacetime, by default equal to 4. From this definition, the Weyl tensor has all the symmetries properties of the Riemann tensor; i.e. it is antisymmetric with respect to interchanging the position of its 1st and 2nd indices, or 3rd and 4th indices, and symmetric with respect to interchanging the positions of the 1st and 2nd pair of indices. In addition, it vanishes when contracted on any pair of indices.
The Tetrads:-WeylScalars commands is part of the Tetrads package and computes the Weyl scalars that correspond to a given tetrad, passed as a 4 x 4 matrix that satisfies the tetrad definition. For such tetrads, Tetrads:-IsTetrad returns true. The Weyl command can also compute the Weyl scalars, explained further below, by entering Weyl[scalars], but only for the tetrad set with Setup. In this sense Tetrads:-WeylScalars allows for easy experimentation with different tetrads without having to set the tetrad at every step (see related tetrads example in what is new in Maple 2021).
When the indices of Weyl assume integer values they are expected to be between 0 and the spacetime dimension, prefixed by ~ when they are contravariant, and the corresponding value of Weyl is returned. When working with a signature that has the timelike component in position 4, the values 0 and 4, or for the case any dimension instead of 4, set for the spacetime, represent the same object. When the indices have symbolic values Weyl returns unevaluated after normalizing its indices taking into account their symmetry properties.
Computations performed with the Physics package commands take into account Einstein's sum rule for repeated indices - see `.` and Simplify. The distinction between covariant and contravariant indices in the input of tensors is done by prefixing contravariant ones with ~, say as in ~mu; in the output, contravariant indices are displayed as superscripts. For contracted indices, you can enter them one covariant and one contravariant. Note however that - provided that the spacetime metric is Galilean (Euclidean or Minkowski), or the object is a tensor also in curvilinear coordinates - this distinction in the input is not relevant, and so contracted indices can be entered as both covariant or both contravariant, in which case they will be automatically rewritten as one covariant and one contravariant. Tensors can have spacetime and space indices at the same time. To change the type of letter used to represent spacetime or space indices see Setup.
During a Maple session, the value of any component of C__α,β,μ,ν is automatically determined by the value of the spacetime metric at the moment. When Physics is loaded, the spacetime is set to Minkowski type, and so all the elements of Weyl are automatically zero. To set the spacetime metric to something different use Setup. Also, at least one system of coordinates must be set in order to compute the derivatives entering the definition of the Christoffel symbols, used to construct the tensors entering the definition of the Weyl tensor. For that purpose see Coordinates or Setup.
Besides being indexed with four indices, Weyl accepts the following keywords:
array: (synonym: Array, Matrix, matrix, or no indices whatsoever, as in Weyl[]) returns an Array that when indexed with numerical values from 1 to the dimension of spacetime it returns the value of each of the components of Weyl. If this keyword is passed preceded by the tensor indices, that can be covariant or contravariant, the values in the resulting array are computed taking into account the character of the given indices. If only two of these indices are names, the rest have numerical values (if contravariant then preceded by ~), the returned object is the corresponding 2 x 2 Matrix.
~: returns an Array with the all-contravariant components of the Weyl tensor
definition: returns the definition of the Weyl tensor in terms of the Riemann and Ricci tensors.
nonzero: returns a set of equations, with the left-hand side as a sequence of four positive numbers identifying the element of C__α,β,μ,ν and the corresponding value on the right-hand side. Note that this set is actually the output of the ArrayElems command when passing to it the Array obtained with the keyword array.
scalars: returns the five complex Weyl scalars Psi[0], Psi[1], Psi[2], Psi[3], Psi[4] of the Newman-Penrose formalism, relevant in the classification of the PetrovType of a spacetime.
scalarsdefinition: returns the definition of the Weyl scalars; note that a general sign in this definition depends on the signature, that you can query entering Setup(signature) and change it using Setup to any of the four possible signatures predefined.
Some automatic checking and normalization are carried out each time you enter Weyl[...]. The checking is concerned with possible syntax errors. The automatic normalization takes into account the symmetry properties of the indices of Weyl[mu,nu,alpha] as described in the first paragraph.
The %Weyl command is the inert form of Weyl, so it represents the same mathematical operation but without performing it. To perform the operation, use value.
Examples
with⁡Physics:
Setup⁡mathematicalnotation=true
mathematicalnotation=true
Set up a coordinate system to work with - the first one to be set is automatically taken as the differentiation variables for d_, the covariant derivative D_ and the dAlembertian
Setup⁡coordinatesystems=cartesian
⁢Systems of spacetime coordinates are:⁢X=x,y,z,t
coordinatesystems=X
When Physics is initialized, the default spacetime metric is of Minkowski type. You can see the metric querying Setup, as in Setup(metric);, or directly entering the metric as g_[], with no indices
g_
gμ,ν=−10000−10000−100001
Check the nonzero components of Christoffel, used to construct the Weyl tensor entering the definition of Weyl: because the default spacetime is of Minkowski type, there are none
Christoffelnonzero
Γα,μ,ν=∅
Hence
Christoffelμ,α,β
0
Weylμ,ν,α,β
and the same is valid for all the general relativity tensors defined in terms of Christoffel and derivatives of the metric g_. To set the scenario as a curved spacetime set the metric using Setup, for instance indicating the square of the spacetime interval. In this example, we also choose to work in spherical coordinates, so consider for instance the metric defined by
ds2≔r2⁢dtheta2+r2⁢sin⁡θ2⁢dphi2−2⁢dt⁢dr−2⁢k⁡r,t2⁢dt2
ds2≔r2⁢dθ2+r2⁢sin⁡θ2⁢dφ2−2⁢dt⁢dr−2⁢k⁡r,t2⁢dt2
Setup⁡coordinates=spherical,metric=ds2
⁢Systems of spacetime coordinates are:⁢X=r,θ,φ,t
⁢_______________________________________________________
Coordinates: r,θ,φ,t. Signature: - - - +
gμ,ν=000−10r20000r2⁢sin⁡θ20−100−2⁢k⁡r,t2
Setting lowercaselatin_is letters to represent space indices
_______________________________________________________
coordinatesystems=X,metric=1,4=−1,2,2=r2,3,3=r2⁢sin⁡θ2,4,4=−2⁢k⁡r,t2,spaceindices=lowercaselatin_is
To avoid the repeated display of the functionality in k⁡r,t in the following examples and have the display of derivatives in jet notation, indexed, use CompactDisplay
CompactDisplay⁡
k⁡r,t⁢will now be displayed as⁢k
Now when the indices are not numerical, Weyl returns itself after normalizing its indices taking advantage of their symmetry properties, so that different forms of the same tensor enter computations in the same manner, for example, if you interchange the positions as in
Weylα,β,μ,ν
Cα,β,μ,ν
Weylμ,ν,β,α
−Cα,β,μ,ν
+
The definition of the Weyl scalars in terms of the null vectors l_, n_, m_ and mb_ of the Newman-Penrose formalism (see Tetrads), and the scalars themselves for the spacetime metric (9)
Weylscalarsdefinition
ψ__0=−C⁢μ,ν,α,β⁢μ,ν,α,β⁢lμ⁢mν⁢lα⁢mβ,ψ__1=−C⁢μ,ν,α,β⁢μ,ν,α,β⁢lμ⁢nν⁢lα⁢mβ,ψ__2=−C⁢μ,ν,α,β⁢μ,ν,α,β⁢lμ⁢mν⁢m&conjugate0;α⁢nβ,ψ__3=−C⁢μ,ν,α,β⁢μ,ν,α,β⁢lμ⁢nν⁢m&conjugate0;α⁢nβ,ψ__4=−C⁢μ,ν,α,β⁢μ,ν,α,β⁢nμ⁢m&conjugate0;ν⁢nα⁢m&conjugate0;β
Weylscalars
ψ__0=0,ψ__1=0,ψ__2=−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+16⁢r2,ψ__3=0,ψ__4=0
Note that these scalars depend on the choice of orientation for the axis of the tetrad system of references. To change the tetrad or that orientation of axis see Tetrads:-TransformTetrad. These same scalars can be computed with the Tetrads:-WeylScalars, which, when called with no arguments, it computes the scalars for the tetrad set, so the same way as Weyl[scalars] above
with⁡Tetrads
Setting lowercaselatin_ah letters to represent tetrad indices
Defined as tetrad tensors see ?Physics,tetrads, 𝔢a,μ , ηa,b , γa,b,c , λa,b,c
Defined as spacetime tensors representing the NP null vectors of the tetrad formalism see ?Physics,tetrads, lμ , nμ , mμ , m&conjugate0;μ
IsTetrad,NullTetrad,OrthonormalTetrad,PetrovType,SegreType,TransformTetrad,WeylScalars,e_,eta_,gamma_,l_,lambda_,m_,mb_,n_
WeylScalars⁡
The scalars above are constructed using the scalars definition shown lines above departing from the tetrad
e_
𝔢a,μ=−I2⁢2k0000−I⁢r0000−I⁢r⁢sin⁡θ0I2⁢2k00I⁢k⁢2
With WeylScalars, however, you can also compute the scalars for any given tetrad. Construct, for example, one possible different form of a tetrad, say one for which ψ4≠0, via
Tetrads:-TransformTetrad⁡nullrotationwithfixedl_
02⁢r2−I2⁢2⁢r⁢sin⁡θ−E&conjugate0;⁢k000−k−1k2⁢r⁢E+E&conjugate0;2−I2⁢sin⁡θ⁢2⁢r⁢E−E&conjugate0;−k⁢E⁢E&conjugate0;+102⁢r2I2⁢2⁢r⁢sin⁡θ−E⁢k
To verify that a 4 x 4 matrix is a valid tetrad, i.e., satisfies the tetrad definition,
e_definition
𝔢a,μ⁢𝔢bμbμ=ηa,b
you can use IsTetrad
IsTetrad⁡
Type of tetrad: null
true
Now, without setting this tetrad using Setup, compute the corresponding Weyl scalars:
ψ__0=0,ψ__1=0,ψ__2=−2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−16⁢r2,ψ__3=−E&conjugate0;⁢2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−12⁢r2,ψ__4=−E&conjugate0;2⁢2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−1r2
We see in this result the expected ψ4≠0. When the tetrad is what you want or produces the Weyl scalars you expect, you can set it the standard way using Setup, as in Setup(tetrad ...) where the right-hand side is the 4x4 matrix.
Back to the Weyl tensor, to express it in terms of the Riemann tensor, the Christoffel symbols and its derivatives, or the metric g_ itself, use convert
=convert⁡,Riemann
Cα,β,μ,ν=Rα,β,μ,ν−R⁢κα,κ,μ⁢κα,κ,μ⁢gβ,ν2+R⁢κα,κ,ν⁢κα,κ,ν⁢gβ,μ2+R⁢κβ,κ,μ⁢κβ,κ,μ⁢gα,ν2−R⁢κβ,κ,ν⁢κβ,κ,ν⁢gα,μ2+R⁢λκ,λκ⁢λκ,λκ⁢gα,μ⁢gβ,ν−gα,ν⁢gβ,μ6
=convert⁡,Christoffel
Cα,β,μ,ν=gα,ω⁢∂μ⁡Γ⁢ωβ,ν⁢ωβ,ν−∂ν⁡Γ⁢ωβ,μ⁢ωβ,μ+Γ⁢ωμ,ζ⁢ωμ,ζ⁢Γ⁢ζβ,ν⁢ζβ,ν−Γ⁢ων,ζ⁢ων,ζ⁢Γ⁢ζβ,μ⁢ζβ,μ−∂λ⁡Γ⁢λα,μ⁢λα,μ−∂μ⁡Γ⁢λα,λ⁢λα,λ+Γ⁢σα,μ⁢σα,μ⁢Γ⁢λλ,σ⁢λλ,σ−Γ⁢σα,λ⁢σα,λ⁢Γ⁢λμ,σ⁢λμ,σ⁢gβ,ν2+∂λ⁡Γ⁢λα,ν⁢λα,ν−∂ν⁡Γ⁢λα,λ⁢λα,λ+Γ⁢σα,ν⁢σα,ν⁢Γ⁢λλ,σ⁢λλ,σ−Γ⁢σα,λ⁢σα,λ⁢Γ⁢λν,σ⁢λν,σ⁢gβ,μ2+∂λ⁡Γ⁢λβ,μ⁢λβ,μ−∂μ⁡Γ⁢λβ,λ⁢λβ,λ+Γ⁢σβ,μ⁢σβ,μ⁢Γ⁢λλ,σ⁢λλ,σ−Γ⁢σβ,λ⁢σβ,λ⁢Γ⁢λμ,σ⁢λμ,σ⁢gα,ν2−∂λ⁡Γ⁢λβ,ν⁢λβ,ν−∂ν⁡Γ⁢λβ,λ⁢λβ,λ+Γ⁢σβ,ν⁢σβ,ν⁢Γ⁢λλ,σ⁢λλ,σ−Γ⁢σβ,λ⁢σβ,λ⁢Γ⁢λν,σ⁢λν,σ⁢gα,μ2+g⁢χ,κ⁢χ,κ⁢∂σ⁡Γ⁢σχ,κ⁢σχ,κ−∂χ⁡Γ⁢σκ,σ⁢σκ,σ+Γ⁢τχ,κ⁢τχ,κ⁢Γ⁢σσ,τ⁢σσ,τ−Γ⁢τκ,σ⁢τκ,σ⁢Γ⁢σχ,τ⁢σχ,τ⁢gα,μ⁢gβ,ν−gα,ν⁢gβ,μ6
=convert⁡,g_
Cα,β,μ,ν=gα,ω⁢∂μ⁡g⁢λ,ω⁢λ,ω⁢∂ν⁡gβ,λ+∂β⁡gλ,ν−∂λ⁡gβ,ν2+g⁢λ,ω⁢λ,ω⁢∂μ⁡∂ν⁡gβ,λ+∂β⁡∂μ⁡gλ,ν−∂λ⁡∂μ⁡gβ,ν2−∂ν⁡g⁢κ,ω⁢κ,ω⁢∂μ⁡gβ,κ+∂β⁡gκ,μ−∂κ⁡gβ,μ2−g⁢κ,ω⁢κ,ω⁢∂μ⁡∂ν⁡gβ,κ+∂β⁡∂ν⁡gκ,μ−∂κ⁡∂ν⁡gβ,μ2+g⁢ω,σ⁢ω,σ⁢∂ζ⁡gμ,σ+∂μ⁡gσ,ζ−∂σ⁡gμ,ζ⁢g⁢χ,ζ⁢χ,ζ⁢∂ν⁡gβ,χ+∂β⁡gχ,ν−∂χ⁡gβ,ν4−g⁢ω,τ⁢ω,τ⁢∂ζ⁡gν,τ+∂ν⁡gτ,ζ−∂τ⁡gν,ζ⁢g⁢υ,ζ⁢υ,ζ⁢∂μ⁡gβ,υ+∂β⁡gμ,υ−∂υ⁡gβ,μ4−∂λ⁡g⁢λ,τ⁢λ,τ⁢∂μ⁡gα,τ+∂α⁡gμ,τ−∂τ⁡gα,μ2+g⁢λ,τ⁢λ,τ⁢∂λ⁡∂μ⁡gα,τ+∂α⁡∂λ⁡gμ,τ−∂λ⁡∂τ⁡gα,μ2−∂μ⁡g⁢κ,λ⁢κ,λ⁢∂α⁡gκ,λ2−g⁢κ,λ⁢κ,λ⁢∂α⁡∂μ⁡gκ,λ2+g⁢ω,σ⁢ω,σ⁢∂μ⁡gα,ω+∂α⁡gμ,ω−∂ω⁡gα,μ⁢g⁢λ,υ⁢λ,υ⁢∂σ⁡gλ,υ4−g⁢ψ,σ⁢ψ,σ⁢∂λ⁡gα,ψ+∂α⁡gλ,ψ−∂ψ⁡gα,λ⁢g⁢χ,λ⁢χ,λ⁢∂σ⁡gχ,μ+∂μ⁡gχ,σ−∂χ⁡gμ,σ4⁢gβ,ν2+∂λ⁡g⁢λ,τ⁢λ,τ⁢∂ν⁡gα,τ+∂α⁡gν,τ−∂τ⁡gα,ν2+g⁢λ,τ⁢λ,τ⁢∂λ⁡∂ν⁡gα,τ+∂α⁡∂λ⁡gν,τ−∂λ⁡∂τ⁡gα,ν2−∂ν⁡g⁢κ,λ⁢κ,λ⁢∂α⁡gκ,λ2−g⁢κ,λ⁢κ,λ⁢∂α⁡∂ν⁡gκ,λ2+g⁢ω,σ⁢ω,σ⁢∂ν⁡gα,ω+∂α⁡gν,ω−∂ω⁡gα,ν⁢g⁢λ,υ⁢λ,υ⁢∂σ⁡gλ,υ4−g⁢ψ,σ⁢ψ,σ⁢∂λ⁡gα,ψ+∂α⁡gλ,ψ−∂ψ⁡gα,λ⁢g⁢χ,λ⁢χ,λ⁢∂σ⁡gχ,ν+∂ν⁡gχ,σ−∂χ⁡gν,σ4⁢gβ,μ2+∂λ⁡g⁢λ,τ⁢λ,τ⁢∂μ⁡gβ,τ+∂β⁡gμ,τ−∂τ⁡gβ,μ2+g⁢λ,τ⁢λ,τ⁢∂λ⁡∂μ⁡gβ,τ+∂β⁡∂λ⁡gμ,τ−∂λ⁡∂τ⁡gβ,μ2−∂μ⁡g⁢κ,λ⁢κ,λ⁢∂β⁡gκ,λ2−g⁢κ,λ⁢κ,λ⁢∂β⁡∂μ⁡gκ,λ2+g⁢ω,σ⁢ω,σ⁢∂μ⁡gβ,ω+∂β⁡gμ,ω−∂ω⁡gβ,μ⁢g⁢λ,υ⁢λ,υ⁢∂σ⁡gλ,υ4−g⁢ψ,σ⁢ψ,σ⁢∂λ⁡gβ,ψ+∂β⁡gλ,ψ−∂ψ⁡gβ,λ⁢g⁢χ,λ⁢χ,λ⁢∂σ⁡gχ,μ+∂μ⁡gχ,σ−∂χ⁡gμ,σ4⁢gα,ν2−∂λ⁡g⁢λ,τ⁢λ,τ⁢∂ν⁡gβ,τ+∂β⁡gν,τ−∂τ⁡gβ,ν2+g⁢λ,τ⁢λ,τ⁢∂λ⁡∂ν⁡gβ,τ+∂β⁡∂λ⁡gν,τ−∂λ⁡∂τ⁡gβ,ν2−∂ν⁡g⁢κ,λ⁢κ,λ⁢∂β⁡gκ,λ2−g⁢κ,λ⁢κ,λ⁢∂β⁡∂ν⁡gκ,λ2+g⁢ω,σ⁢ω,σ⁢∂ν⁡gβ,ω+∂β⁡gν,ω−∂ω⁡gβ,ν⁢g⁢λ,υ⁢λ,υ⁢∂σ⁡gλ,υ4−g⁢ψ,σ⁢ψ,σ⁢∂λ⁡gβ,ψ+∂β⁡gλ,ψ−∂ψ⁡gβ,λ⁢g⁢χ,λ⁢χ,λ⁢∂σ⁡gχ,ν+∂ν⁡gχ,σ−∂χ⁡gν,σ4⁢gα,μ2+g⁢χ,κ⁢χ,κ⁢∂σ⁡g⁢λ,σ⁢λ,σ⁢∂κ⁡gχ,λ+∂χ⁡gκ,λ−∂λ⁡gχ,κ2+g⁢λ,σ⁢λ,σ⁢∂κ⁡∂σ⁡gχ,λ+∂χ⁡∂σ⁡gκ,λ−∂λ⁡∂σ⁡gχ,κ2−∂χ⁡g⁢ψ,σ⁢ψ,σ⁢∂κ⁡gψ,σ2−g⁢ψ,σ⁢ψ,σ⁢∂χ⁡∂κ⁡gψ,σ2+g⁢τ,ζ⁢τ,ζ⁢∂κ⁡gχ,ζ+∂χ⁡gκ,ζ−∂ζ⁡gχ,κ⁢g⁢ω,σ⁢ω,σ⁢∂τ⁡gω,σ4−g⁢ι,τ⁢ι,τ⁢∂σ⁡gι,κ+∂κ⁡gι,σ−∂ι⁡gκ,σ⁢g⁢σ,υ⁢σ,υ⁢∂τ⁡gχ,υ+∂χ⁡gτ,υ−∂υ⁡gχ,τ4⁢gα,μ⁢gβ,ν−gα,ν⁢gβ,μ6
Check the value of C__α,β,μ,ν, say for α=1, β = 2, μ = 2, ν = 4
Weyl1,2,2,4
kr2⁢r23+kr,r⁢k⁢r23−2⁢k⁢r⁢kr3+k23−16
Check now the value of C⁢⁢⁢⁢β,μ,ν⁢α , with the 1st index contravariant, for the same values of the indices (note you enter the value of the contravariant index prefixed by ~)
Weyl~1,2,2,4
To compute with a representation for Weyl without actually performing the operation, use the inert form %Weyl. To afterwards perform the operation use value
%Weyl~1,2,2,4
C⁢12,2,4⁢12,2,4
value⁡
The all-covariant and all-contravariant components of the Weyl tensor as Arrays
Weyl
Weyl`~`
The (nonzero) Array elements of any these arrays can be computed using ArrayElems.
The nonzero values of C__α,β,μ,ν and of C⁢⁢⁢⁢β,μ,ν⁢α (note you enter the character of the contravariant indices prefixed by ~)
Weylnonzero
Cα,β,μ,ν=1,2,2,4=kr2⁢r23+kr,r⁢k⁢r23−2⁢k⁢r⁢kr3+k23−16,1,2,4,2=−kr2⁢r23−kr,r⁢k⁢r23+2⁢k⁢r⁢kr3−k23+16,1,3,3,4=sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,1,3,4,3=−sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,1,4,1,4=2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−13⁢r2,1,4,4,1=−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+13⁢r2,2,1,2,4=−kr2⁢r23−kr,r⁢k⁢r23+2⁢k⁢r⁢kr3−k23+16,2,1,4,2=kr2⁢r23+kr,r⁢k⁢r23−2⁢k⁢r⁢kr3+k23−16,2,3,2,3=−2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢r2⁢sin⁡θ23,2,3,3,2=2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢r2⁢sin⁡θ23,2,4,1,2=kr2⁢r23+kr,r⁢k⁢r23−2⁢k⁢r⁢kr3+k23−16,2,4,2,1=−kr2⁢r23−kr,r⁢k⁢r23+2⁢k⁢r⁢kr3−k23+16,2,4,2,4=−2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23,2,4,4,2=2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23,3,1,3,4=−sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,3,1,4,3=sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,3,2,2,3=2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢r2⁢sin⁡θ23,3,2,3,2=−2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢r2⁢sin⁡θ23,3,4,1,3=sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,3,4,3,1=−sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,3,4,3,4=−2⁢k2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢sin⁡θ23,3,4,4,3=2⁢k2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢sin⁡θ23,4,1,1,4=−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+13⁢r2,4,1,4,1=2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−13⁢r2,4,2,1,2=−kr2⁢r23−kr,r⁢k⁢r23+2⁢k⁢r⁢kr3−k23+16,4,2,2,1=kr2⁢r23+kr,r⁢k⁢r23−2⁢k⁢r⁢kr3+k23−16,4,2,2,4=2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23,4,2,4,2=−2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23,4,3,1,3=−sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,4,3,3,1=sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,4,3,3,4=2⁢k2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢sin⁡θ23,4,3,4,3=−2⁢k2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢sin⁡θ23
Weyl~alpha,β,μ,ν,nonzero
C⁢αβ,μ,ν⁢αβ,μ,ν=1,1,1,4=2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−13⁢r2,1,1,4,1=−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+13⁢r2,1,2,1,2=kr2⁢r23+kr,r⁢k⁢r23−2⁢k⁢r⁢kr3+k23−16,1,2,2,1=−kr2⁢r23−kr,r⁢k⁢r23+2⁢k⁢r⁢kr3−k23+16,1,3,1,3=sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,1,3,3,1=−sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,1,4,1,4=4⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23⁢r2,1,4,4,1=−4⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23⁢r2,2,1,2,4=−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+16⁢r2,2,1,4,2=2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−16⁢r2,2,3,2,3=−2⁢sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,2,3,3,2=2⁢sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,2,4,1,2=2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−16⁢r2,2,4,2,1=−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+16⁢r2,2,4,2,4=−2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23⁢r2,2,4,4,2=2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23⁢r2,3,1,3,4=−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+16⁢r2,3,1,4,3=2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−16⁢r2,3,2,2,3=2⁢kr2⁢r23+2⁢kr,r⁢k⁢r23−4⁢k⁢r⁢kr3+2⁢k23−13,3,2,3,2=−2⁢kr2⁢r23−2⁢kr,r⁢k⁢r23+4⁢k⁢r⁢kr3−2⁢k23+13,3,4,1,3=2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−16⁢r2,3,4,3,1=−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+16⁢r2,3,4,3,4=−2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23⁢r2,3,4,4,3=2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23⁢r2,4,2,2,4=−kr2⁢r23−kr,r⁢k⁢r23+2⁢k⁢r⁢kr3−k23+16,4,2,4,2=kr2⁢r23+kr,r⁢k⁢r23−2⁢k⁢r⁢kr3+k23−16,4,3,3,4=−sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,4,3,4,3=sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k23,4,4,1,4=−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+13⁢r2,4,4,4,1=2⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−13⁢r2
This is the array form of C⁢⁢⁢⁢β,μ,ν⁢α (note you enter the character of the contravariant indices prefixed by ~)
Weyl~alpha,β,μ,ν,array
To use this array, because its components were computed already taking into account the (covariant/contravariant) character of its indices, you do not need to indicate furthermore that character. So for C⁢11 we have
C1,2,2,4
Compare with the output obtained entering Weyl[~1, 2, 2, 4] in eq (14)
−
Verify that the Weyl tensor vanishes when contracted on a pair of indices; take for instance the 1st and 3rd indices, you can see the corresponding matrix (note the first index as contravariant)
Weyl~1,β,1,ν,matrix
C⁢1β,1,ν⁢1β,1,ν=0002⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−13⁢r20kr2⁢r23+kr,r⁢k⁢r23−2⁢k⁢r⁢kr3+k23−160000sin⁡θ2⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2300004⁢−12+kr2⁢r2+kr,r⁢k⁢r2−2⁢k⁢r⁢kr+k2⁢k23⁢r2
Add the four matrices completing the contraction of indices
Weyl~1,β,1,ν,matrix+Weyl~2,β,2,ν,matrix+Weyl~3,β,3,ν,matrix+Weyl~4,β,4,ν,matrix
C⁢1β,1,ν⁢1β,1,ν+C⁢2β,2,ν⁢2β,2,ν+C⁢3β,3,ν⁢3β,3,ν+C⁢4β,4,ν⁢4β,4,ν=0002⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−13⁢r2+−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+13⁢r2000000002⁢kr2⁢r2+2⁢kr,r⁢k⁢r2−4⁢k⁢r⁢kr+2⁢k2−13⁢r2+−2⁢kr2⁢r2−2⁢kr,r⁢k⁢r2+4⁢k⁢r⁢kr−2⁢k2+13⁢r2000
simplify⁡
C⁢1β,1,ν⁢1β,1,ν+C⁢2β,2,ν⁢2β,2,ν+C⁢3β,3,ν⁢3β,3,ν+C⁢4β,4,ν⁢4β,4,ν=0000000000000000
In different contexts it is sometimes necessary to classify the spacetime, for instance performing a PetrovType classification, or the SegreType classification of the Ricci tensor. These classification commands are in the Tetrads package. For example, for the spacetime considered, we have
Tetrads:-PetrovType⁡
D
Tetrads:-SegreType⁡
D,[2,(11)]
See Also
`.`, Array, ArrayElems, Christoffel, CompactDisplay, Coordinates, DifferentialGeometry[Tensor][WeylTensor], Einstein, g_, l_, m_, mb_, n_, Physics, Physics conventions, Physics examples, Physics Updates, Tensors - a complete guide, Mini-Course Computer Algebra for Physicists, Ricci, Riemann, Setup, Tetrads, TransformTetrad, Typesetting, value
References
Landau, L.D., and Lifshitz, E.M. The Classical Theory of Fields, Course of Theoretical Physics Volume 2, fourth revised English edition. Elsevier, 1975.
Compatibility
The Physics[Weyl] command was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
The Physics[Weyl] and Physics[Tetrads][WeylScalars] commands were updated in Maple 2017.
The Physics[Tetrads][WeylScalars] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
Download Help Document