RuppertMatrix - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


PolynomialTools[Approximate]

  

RuppertMatrix

  

construct the Ruppert matrix of a polynomial

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

RuppertMatrix(F, vars)

RuppertMatrix(F, vars, rtableoptions=[options])

Parameters

F

-

polynom

vars

-

set or list of variables

options

-

(optional) options that are passed to the Matrix constructor

Description

• 

The RuppertMatrix command returns a Matrix derived from the coefficients of F which counts the factors of F over the complex numbers with the dimension of its null space (its rank deficiency).

• 

The Ruppert matrix is defined, for a bivariate polynomial f over x,y, as the matrix of the linear system resulting from the partial differential equation xhyf=ygf where g and hy are unknown polynomials of the same degree as f in each variable except degreeg,xdegreef,x1 and degreehy,ydegreef,y1

• 

The multivariate version of the Ruppert matrix is defined similarly, just adding an unknown polynomial hxi and one equation for each additional variable xi.

• 

In this implementation the unknowns are additionally constrained so that they have total degree less than or equal to f. This results in a smaller matrix with the same property on its rank.

• 

This routine is called by Factor.

Examples

withPolynomialTools:-Approximate:

R1RuppertMatrixx2+y21,x,y

R100−1010000200−2000000010100−2000200−10−10

(1)

Polynomial is irreducible, so the rank deficiency is one

minupperboundR1LinearAlgebra:-RankR1

1

(2)

rtable options are passed to the matrix constructor; the datatype option is most useful for approximate factorization

RuppertMatrixx2+y21,x,y,rtableoptions=datatype=float8

0.0.−1.0.1.0.0.0.0.2.0.0.−2.0.0.0.0.0.0.0.1.0.1.0.0.−2.0.0.0.2.0.0.−1.0.−1.0.

(3)

Many variables

R2RuppertMatrixx2+y21x2+z21,x,y,z

minupperboundR2LinearAlgebra:-RankR2

2

(4)

References

  

Ruppert, W.M. "Reducibility of polynomials f(x,y) modulo p." Journal of Number Theory Vol. 77(1), (1999): 62-70.

  

Gao, S. "Factoring multivariate polynomials via partial differential equations." Mathematics of Computation Vol. 72(242), (2002): 801-822.

  

Kaltofen, E.; May, J.; Yang, Z.; and Zhi, L. "Approximate factorization of multivariate polynomials using singular value decomposition." Journal of Symbolic Computation Vol. 43(5), (2008): 359-376.

Compatibility

• 

The PolynomialTools:-Approximate:-RuppertMatrix command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

Factor