RegularChains[ChainTools]
Dimension
dimension of a regular chain
Calling Sequence
Parameters
Description
Examples
Dimension(rc, R)
rc
-
regular chain of R
R
polynomial ring
The command Dimension(rc, R) returns the dimension of the saturated ideal of rc. This is also the number of variables of R minus the number of elements in rc.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form Dimension(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][Dimension](..).
with⁡RegularChains:
with⁡ChainTools:
R≔PolynomialRing⁡x,y,a,b,c,d,g,h
R≔polynomial_ring
sys≔a⁢x+b⁢y−g,c⁢x+d⁢y−h
decl≔Triangularize⁡sys,R,output=lazard
decl≔regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain
map⁡Equations,decl,R
c⁢x+d⁢y−h,d⁢a−b⁢c⁢y−h⁢a+c⁢g,c⁢x+d⁢y−h,d⁢a−b⁢c,h⁢b−d⁢g,a⁢x+b⁢y−g,d⁢y−h,c,d⁢y−h,a,h⁢b−d⁢g,c,c⁢x−h,h⁢a−c⁢g,b,d,a⁢x+b⁢y−g,c,d,h,c⁢x+d⁢y,d⁢a−b⁢c,g,h,b⁢y−g,a,c,d,h,y,a,c,g,h,x,b,d,g,h,a,b,c,d,g,h
We see that RegularChains[Triangularize] produces the regular chains in decreasing order of dimension. This is, in fact, part of the specifications of this function.
map⁡Dimension,decl,R
6,5,5,4,4,4,4,3,3,3,2
Here is another simple example with a triangular decomposition containing regular chains of different dimensions.
R≔PolynomialRing⁡x,y,z
sys≔x⁢x−1⁢y−1+x−2⁢y,x⁢x−1⁢z,x⁢x−1⁢x−2
dec≔Triangularize⁡sys,R
dec≔regular_chain,regular_chain,regular_chain
map⁡Equations,dec,R
x,x−1,y,x−2,y−1,z
map⁡Dimension,dec,R
2,1,0
These regular chains are a surface, a line, and a point respectively.
See Also
ChainTools
Equations
map
PolynomialRing
RegularChains
Triangularize
Download Help Document