SquarefreeFactorization - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


RegularChains[ChainTools]

  

SquarefreeFactorization

  

compute a square-free decomposition of a polynomial modulo a regular chain

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SquarefreeFactorization(p, v, rc, R)

SquarefreeFactorization(p, v, rc, R,options)

Parameters

p

-

polynomial

v

-

variable

rc

-

regular chain

R

-

polynomial ring

options

-

equation of the form 'method'=mth, where mth is either 'evala' or 'src'

Description

• 

The command SquarefreeFactorization(p, v, rc, R) returns a list of pairs [sqf_i, rc_i].  For each pair, the list sqf_i is a square-free decomposition of p modulo the saturated ideal of rc_i; each element in the list sqf_i is a pair as [s_j,e_j], where s_j is a square-free polynomial modulo rc_i and e_j is the exponent of s_j in p.

• 

All the regular chains from the output pairs form a triangular decomposition of rc in the sense of Kalkbrener.

• 

The option 'method' specifies which gcd algorithm to use. The default option, 'method'='evala', uses a modular algorithm. The other option is 'method'='src', which uses a subresultant-based approach. This method is generally slower, but can be faster in some cases, for instance, if the dimension of the saturated ideal of rc is high, say greater than 4.

• 

Assumptions: the polynomial ring is assumed to have characteristic zero; the initial of p is regular w.r.t. rc; v is greater than the main variables of the regular chain rc in R.

Examples

Example 1

withRegularChains:withChainTools:

RPolynomialRingy,x

Rpolynomial_ring

(1)

qexpandx22x12

qx46x3+13x212x+4

(2)

ppremy+6y+2xxy21yx,q,x

px3y32x2y4+xy5+6x3y214x2y3+8xy412x2y2+12xy3x2y+2xy2y36x2+14yx8y2+12x12y

(3)

CChainq,EmptyR,R

Cregular_chain

(4)

SquarefreeFactorizationp,y,C,R

2y5+8y425y34y2+12y,1,regular_chain,y+6,1,y21,2,regular_chain

(5)

SquarefreeFactorizationp,y,C,R,method=src

2y5+8y425y34y2+12y,1,regular_chain,y+6,1,y21,2,regular_chain

(6)

Example 2

RPolynomialRingx,y

Rpolynomial_ring

(7)

px+yx+2y2x+3y3

px+yx+2y2x+3y3

(8)

rcChainy2+1,EmptyR,R

rcregular_chain

(9)

pSparsePseudoRemainderp,rc,R

px6+14x5y80x4238x3y+387x2+324xy108

(10)

SquarefreeFactorizationp,x,rc,R

x+y,1,x+2y,2,x+3y,3,rc

(11)

Example 3

rcChainy2+y,EmptyR,R

rcregular_chain

(12)

px+yx+2y2x+3y3

px+yx+2y2x+3y3

(13)

pSparsePseudoRemainderp,rc,R

px6+14x5y80x4y+238x3y387x2y+324xy108y

(14)

SquarefreeFactorizationp,x,rc,R

x1,1,x2,2,x3,3,regular_chain,x,6,regular_chain

(15)

SquarefreeFactorizationp,x,rc,R,method=src

x1,1,x2,2,x3,3,regular_chain,x,6,regular_chain

(16)

Compatibility

• 

The RegularChains[ChainTools][SquarefreeFactorization] command was introduced in Maple 16.

• 

For more information on Maple 16 changes, see Updates in Maple 16.

See Also

gcd

RegularGcd

RegularizeInitial

Squarefree