RegularChains
ConstructibleSetTools[IsContained]
check whether or not a constructible set is a subset of another one
SemiAlgebraicSetTools[IsContained]
check whether or not a semi-algebraic set is a subset of another one
Calling Sequence
Parameters
Description
Examples
References
Compatibility
IsContained(cs1, cs2, R)
IsContained(lrsas1, lrsas2, R)
cs1, cs2
-
constructible sets
lrsas1, lrsas2
lists of regular semi-algebraic systems
R
polynomial ring
The command IsContained(cs1, cs2, R) returns true if cs1 is contained in cs2; otherwise false. The polynomial ring may have characteristic zero or a prime characteristic. cs1 and cs2 must be defined over the same ring R.
The command IsContained('lrsas1', 'lrsas2', 'R') returns true if lrsas1 is contained in lrsas2; otherwise false. The polynomial ring must have characteristic zero. lrsas1 and lrsas2 must be defined over the same ring R.
A constructible set is encoded as an constructible_set object, see the type definition in ConstructibleSetTools.
A semi-algebraic set is encoded by a list of regular_semi_algebraic_system, see the type definition in RealTriangularize.
This command is available once either the RegularChains[ConstructibleSetTools] submodule or RegularChains[SemiAlgebraicSetTools] submodule has been loaded. It can also be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][IsContained] or RegularChains[SemiAlgebraicSetTools][IsContained].
with⁡RegularChains:
with⁡ConstructibleSetTools:
First, define the polynomial ring R and two polynomials of R.
R≔PolynomialRing⁡x,y,t
R≔polynomial_ring
p≔5⁢t+5⁢x−y−10⁢t+7
p≔5⁢t+5⁢x−y−10⁢t−7
q≔5⁢t−5⁢x−t+2⁢y+−7⁢t+11
q≔5⁢t−5⁢x−t+2⁢y−7⁢t+11
Using the GeneralConstruct function and adding one inequality, you can build a constructible set. By x−t and x+t, two constructible sets cs1 and cs2 are different.
cs1≔GeneralConstruct⁡p,q,x−t,R
cs1≔constructible_set
cs2≔GeneralConstruct⁡p,q,x+t,R
cs2≔constructible_set
Use the IsContained function to check if one is contained in another.
IsContained⁡cs1,cs2,R
false
IsContained⁡cs2,cs1,R
IsContained⁡Intersection⁡cs2,cs1,R,cs2,R
true
The empty constructible set is contained in any other constructible set.
emcs≔EmptyConstructibleSet⁡R
emcs≔constructible_set
IsContained⁡emcs,cs2,R
IsContained⁡emcs,emcs,R
Semi-algebraic case:
lrsas1≔RealTriangularize⁡p2+q2,,,x−t,R
lrsas1≔regular_semi_algebraic_system
lrsas2≔RealTriangularize⁡p,q,,,x+t,x−t,R
lrsas2≔regular_semi_algebraic_system,regular_semi_algebraic_system
IsContained⁡lrsas1,lrsas2,R
IsContained⁡lrsas2,lrsas1,R
Chen, C.; Golubitsky, O.; Lemaire, F.; Moreno Maza, M.; and Pan, W. "Comprehensive Triangular Decomposition". Proc. CASC 2007, LNCS, Vol. 4770: 73-101. Springer, 2007.
Chen, C.; Davenport, J.-D.; Moreno Maza, M.; Xia, B.; and Xiao, R. "Computing with semi-algebraic sets represented by triangular decomposition". Proceedings of 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC 2011), ACM Press, pp. 75--82, 2011.
The RegularChains[SemiAlgebraicSetTools][IsContained] command was introduced in Maple 16.
The lrsas1 parameter was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
See Also
Complement
ConstructibleSet
ConstructibleSetTools
Difference
EmptyConstructibleSet
Intersection
RealTriangularize
Union
Download Help Document