RegularChains[ConstructibleSetTools]
Union
compute the union of two constructible sets
Calling Sequence
Parameters
Description
Examples
Union(cs1, cs2, R)
cs1, cs2
-
constructible sets
R
polynomial ring
The command Union(cs1, cs2, R) returns a constructible set, the union of cs1 and cs2.
There might be redundancy in the output.
This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form Union(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][Union](..).
with⁡RegularChains:
with⁡ConstructibleSetTools:
Define a polynomial ring R first.
R≔PolynomialRing⁡x,y
R≔polynomial_ring
Consider the following polynomials of R.
F≔2⁢x2+3⁢x⁢y+y2−3⁢x−3⁢y
G≔x⁢y2−x
H≔y3−y
Let cs1 be the solution set of F and G, and cs2 be the solution set of G and H.
cs1≔GeneralConstruct⁡F,G,1,R
cs1≔constructible_set
cs2≔GeneralConstruct⁡G,H,1,R
cs2≔constructible_set
Use the command Union to obtain the union of these two solution sets.
cs3≔Union⁡cs1,cs2,R:Info⁡cs3,R
x−2,y+1,1,x−1,y−1,1,x+1,y−1,1,x,y−3,1,x−1,y+1,1,y−1,1,y+1,1,x,y,1
The Union command is not guaranteed to remove all the redundant components, for efficiency consideration. Use the MakePairwiseDisjoint command to remove them.
cs3≔MakePairwiseDisjoint⁡cs3,R
cs3≔constructible_set
Info⁡cs3,R
x,y−3,1,x,y,1,y+1,1,y−1,1
See Also
Complement
ConstructibleSet
ConstructibleSetTools
GeneralConstruct
Intersection
MakePairwiseDisjoint
RegularChains
Download Help Document