EuclideanReduction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


SNAP

  

EuclideanReduction

  

compute the smallest degree pair of univariate polynomials by Euclidean-like unimodular reduction

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

EuclideanReduction(a, b, z, tau = eps, out)

Parameters

a, b

-

univariate numeric polynomials

z

-

name; indeterminate for a and b

tau = eps

-

(optional) equation where eps is of type numeric and non-negative; stability parameter

out

-

(optional) equation of the form output = obj where obj is 'UR' or a list containing one or more instances of this name; select result objects to compute

Description

• 

The EuclideanReduction(a, b, z) command returns the last numerically well-conditioned basis accepted by the Coprime algorithm [2].  This corresponds to the smallest degree pair of polynomials in the sequence of numerically well-behaved polynomial remainders that can be obtained from (a,b) by unimodular reduction.

• 

It thus provides the user with a pair of polynomials that generates the same ideal generated by (a,b) but with degrees that are, in general, much smaller. Furthermore, the highest degree component of such a reduced pair is a good candidate for an epsilon-GCD of (a,b).

• 

The optional stability parameter tau can be set to any non-negative value eps to control the quality of the output. Decreasing eps yields a more reliable solution. Increasing eps reduces the degrees of the returned basis.

  

As specified by the out option, Maple returns an expression sequence containing the following:

  

* UR contains a 2 by 2 unimodular matrix polynomial U in z such that a,b.U=a',b' where (a', b') is the last basis accepted by the algorithm of [2].

Examples

withSNAP:

az612.4z5+50.18112+62.53z4163.542z3+232.9776z2170.69184z

az612.4z5+50.18112+62.53z4163.542z3+232.9776z2170.69184z

(1)

bz517.6z4+118.26z3372.992z2274.09272+538.3333z

bz517.6z4+118.26z3372.992z2274.09272+538.3333z

(2)

EuclideanReductiona,b,z

4.z445.3201452919812z3+182.643498183852z2301.305647387541z+164.902292707462,3.48999306545107z325.4412393835560z2+55.5055044834605z34.9173360478195

(3)

EuclideanReductiona,b,z,τ=1.×10−8

0.250000000000000z20.875000000000161z+0.659999999999995,1.07691633388640×10−14z5.54556400800266×10−14

(4)

References

  

Beckermann, B., and Labahn, G. "A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials." Journal of Symbolic Computation. Vol. 26, (1998): 691-714.

  

Beckermann, B., and Labahn, G. "When are two numerical polynomials relatively prime?" Journal of Symbolic Computation. Vol. 26, (1998): 677-689.

See Also

SNAP[DistanceToCommonDivisors]

SNAP[EpsilonGCD]