CumulativeDistributionFunction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Statistics

  

CumulativeDistributionFunction

  

compute the cumulative distribution function

 

Calling Sequence

Parameters

Description

Computation

Options

Examples

References

Calling Sequence

CumulativeDistributionFunction(X, t, options)

CDF(X, t, options)

Parameters

X

-

algebraic; random variable or distribution

t

-

algebraic; point

options

-

(optional) equation(s) of the form numeric=value or inert=value; specifies options for computing the cumulative distribution function of a random variable

Description

• 

The CumulativeDistributionFunction function computes the cumulative distribution function of the specified random variable at the specified point.

• 

The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).

• 

The inverse function of the CDF is the Quantile.

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Options

  

The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

• 

numeric=truefalse -- By default, the cumulative distribution function is computed using exact arithmetic. To compute the cumulative distribution function numerically, specify the numeric or numeric=true option.

• 

inert=truefalse -- By default, Maple evaluates integrals, sums, derivatives and limits encountered while computing the CDF. By specifying inert or inert=true, Maple will return these unevaluated.

Examples

withStatistics:

Compute the cumulative distribution function of the beta distribution with parameters p and q.

CumulativeDistributionFunctionΒp,q,t

0t<0tphypergeomp&comma;1q&comma;1+p&comma;tΒp&comma;qpt<11otherwise

(1)

Use numeric parameters.

CumulativeDistributionFunctionΒ3&comma;5&comma;12

35hypergeom−4&comma;3&comma;4&comma;128

(2)

CumulativeDistributionFunctionΒ3&comma;5&comma;12&comma;numeric

0.773437500000000

(3)

Define new distribution.

TDistribution`=`PDF&comma;t1πt2+1&colon;

XRandomVariableT&colon;

CDFX&comma;0

12

(4)

CDFX&comma;0&comma;numeric

0.4999999999

(5)

CDFX&comma;u

π+2arctanu2π

(6)

Use the inert option.

CDFX&comma;0&comma;inert=true

01π_t2+1&DifferentialD;_t

(7)

CDFX&comma;t&comma;inert=true

t1π_t02+1&DifferentialD;_t0

(8)

NRandomVariableNormal0&comma;1&colon;

CDFN&comma;t&comma;inert=true

t2&ExponentialE;_t1222π&DifferentialD;_t1

(9)

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Computation]

Statistics[Distributions]

Statistics[Quantile]

Statistics[RandomVariables]