Statistics[Distributions]
Power
power distribution
Calling Sequence
Parameters
Description
Examples
References
Power(b, c)
PowerDistribution(b, c)
b
-
scale parameter
c
shape parameter
The power distribution is a continuous probability distribution with probability density function given by:
f⁡t=0t<0c⁢tc−1bct≤b0otherwise
subject to the following conditions:
0<b,0<c
The power variate with scale parameter 1 and shape parameter c is related to the Beta variate with first scale parameter c and second scale parameter 1 by Power(1,c) ~ Beta(c,1).
The power variate with scale parameter b and shape parameter 1 is equivalent to the Uniform variate with lower bound parameter 0 and upper bound parameter b: Power(b,1) ~ Uniform(0,b).
Note that the Power command is inert and should be used in combination with the RandomVariable command.
with⁡Statistics:
X≔RandomVariable⁡Power⁡b,c:
PDF⁡X,u
0u<0c⁢uc−1bcu≤b0otherwise
PDF⁡X,0.5
c⁢0.5−1.+cbc0.5≤b0.otherwise
Mean⁡X
b⁢c1+c
Variance⁡X
b2⁢cc+2⁢1+c2
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics
Statistics[RandomVariable]
Download Help Document