Statistics[Distributions]
VonMises
von Mises distribution
Calling Sequence
Parameters
Description
Examples
References
VonMises(b, a)
VonMisesDistribution(b, a)
b
-
shape parameter
a
distribution mode
The von Mises distribution is a continuous probability distribution with probability density function given by:
f⁡t=0t<a−πⅇb⁢cos⁡t−a2⁢π⁢BesselI⁡0,bt≤a+π0otherwise
subject to the following conditions:
0<b,a::real
The von Mises variate with location parameter a and scale parameter b tending to 0 from the right, tends to the Uniform variate Uniform(a - Pi, a + Pi).
Note that the VonMises command is inert and should be used in combination with the RandomVariable command.
with⁡Statistics:
X≔RandomVariable⁡VonMises⁡b,a:
PDF⁡X,u
0u<a−πⅇb⁢cos⁡a−u2⁢π⁢BesselI⁡0,bu≤a+π0otherwise
PDF⁡X,π2assuming−π2<a,a<3⁢π2
ⅇb⁢sin⁡a2⁢π⁢BesselI⁡0,b
Mode⁡X
Mean⁡X
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics
Statistics[RandomVariable]
Download Help Document