Statistics[Distributions]
Weibull
Weibull distribution
Calling Sequence
Parameters
Description
Examples
References
Weibull(b, c)
WeibullDistribution(b, c)
b
-
scale parameter
c
shape parameter
The Weibull distribution is a continuous probability distribution with probability density function given by:
f⁡t=0t<0c⁢tc−1⁢ⅇ−tbcbcotherwise
subject to the following conditions:
0<b,0<c
The Weibull variate is related to the standard Weibull variate by Weibull(b,c) ~ b*Weibull(1,c).
The Weibull variate with scale parameter b and shape parameter 1 is equivalent to the Exponential variate with scale parameter b: Weibull(b,1) ~ Exponential(b).
The Weibull variate with scale parameter b and shape parameter 2 is equivalent to the Rayleigh variate: Weibull(b,2) ~ Rayleigh(b).
Note that the Weibull command is inert and should be used in combination with the RandomVariable command.
with⁡Statistics:
X≔RandomVariable⁡Weibull⁡b,c:
PDF⁡X,u
0u<0c⁢uc−1⁢ⅇ−ubcbcotherwise
PDF⁡X,0.5
c⁢0.5−1.+c⁢ⅇ−1.⁢0.5bcbc
Mean⁡X
b⁢Γ⁡1+cc
Variance⁡X
b2⁢Γ⁡c+2c−Γ⁡1+cc2
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
See Also
Statistics
Statistics[RandomVariable]
Download Help Document