ProbabilityDensityFunction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Statistics

  

ProbabilityDensityFunction

  

compute the probability density function

 

Calling Sequence

Parameters

Description

Computation

Options

Examples

References

Calling Sequence

ProbabilityDensityFunction(X, t, options)

PDF(X, t, options)

Parameters

X

-

algebraic; random variable or distribution

t

-

algebraic; point

options

-

(optional) equations; specify options for computing the probability density function of a random variable

Description

• 

The ProbabilityDensityFunction function computes the probability density function of the specified random variable at the specified point.

• 

The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Options

  

The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

• 

numeric=truefalse -- By default, the probability density function is computed using exact arithmetic. To compute the probability density function numerically, specify the numeric or numeric = true option.

• 

inert=truefalse -- By default, Maple evaluates integrals, sums, derivatives and limits encountered while computing the PDF. By specifying inert or inert=true, Maple will return these unevaluated.

• 

mainbranch - returns the main branch of the distribution only.

Examples

withStatistics:

Compute the probability density function of the beta distribution with parameters p and q.

ProbabilityDensityFunctionΒp,q,t

0t<0tp11tq1Βp&comma;qt<10otherwise

(1)

Use numeric parameters.

ProbabilityDensityFunctionΒ3&comma;5&comma;12

10564

(2)

ProbabilityDensityFunctionΒ3&comma;5&comma;12&comma;numeric

1.640625000

(3)

Define new distribution.

TDistribution`=`PDF&comma;t1πt2+1&colon;

XRandomVariableT&colon;

PDFX&comma;u

1πu2+1

(4)

PDFX&comma;0

1π

(5)

CDFX&comma;u

π+2arctanu2π

(6)

Use the inert option with a new RandomVariable, Y.

YRandomVariableDistribution`=`CDF&comma;uπ+2arctanu2π

Y_R3

(7)

PDFY&comma;t

1t2+1π

(8)

PDFY&comma;t&comma;inert

&DifferentialD;&DifferentialD;tπ+2arctant2π

(9)

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Computation]

Statistics[Distributions]

Statistics[RandomVariables]