SummationSteps - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Student[Basics]

  

SummationSteps

  

generate steps for evaluating summations

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SummationSteps( expr )

SummationSteps( expr, implicitmultiply = true )

Parameters

expr

-

string or expression

implicitmultiply

-

(optional) truefalse

output = ...

-

(optional) option to control the return value

displaystyle = ...

-

(optional) option to control the layout of the steps

Description

• 

The SummationSteps command accepts an expression that is expected to contain summations and displays the steps required to evaluate each summation given.

• 

If expr is a string, then it is parsed into an expression using InertForm:-Parse so that no automatic simplifications are applied, and thus no steps are missed.  

• 

The implicitmultiply option is only relevant when expr is a string.  This option is passed directly on to the InertForm:-Parse command and will cause things like 2x to be interpreted as 2*x, but also, xyz to be interpreted as x*y*z.

• 

The output and displaystyle options are described in Student:-Basics:-OutputStepsRecord. The return value is controlled by the output option.  

• 

This function is part of the Student:-Basics package.

Examples

withStudent:-Basics:

SummationStepsSumi,i=1..n

i=1niEvaluate sumi=1nin+122n212Simplify12n2+12n

(1)

SummationSteps1+2x+3Sum2i,i=1..n

1+2x+3i=1n2iExamine Sumi=1n2iBring2outside of the sum2i=1niEvaluate sumi=1ni2n+122n212Multiplyn+12n1Simplifyn2+nThis gives:1+2x+3n2+nSimplify3n2+3n+2x+1

(2)

SummationStepsSumi,i=1..n+Sumj+2,j=4..18+Sum4k+1,k=10..n

i=1ni+j=418j+2+k=10n4k+4Examine Sumi=1niEvaluate sumi=1nin+122n212Simplify12n2+12nThis gives:12n2+12n+j=418j+2+k=10n4k+4Examine Sumj=418j+2Reindex the summation so it starts at 1j=115j+3+2Simplify and expand expressionj=115j+5Apply the sum rule:k=mna__k+b__k=k=mna__k+k=mnb__kj=115j+j=1155Evaluate the1stsumj=115j120Evaluate the2ndsumj=115575Substitute evaluated sums into the expression120+75Simplify195This gives:12n2+12n+195+k=10n4k+4Examine Sumk=10n4k+4Reindex the summation so it starts at 1k=1n94k+9+4Simplify and expand expressionk=1n94k+40Apply the sum rule:k=mna__k+b__k=k=mna__k+k=mnb__kk=1n94k+k=1n940Bring4outside of the1stsum4k=1n9kEvaluate the1stsumk=1n9k48+n22+4n2Multiply28+n2+162nEvaluate the2ndsumk=1n94040n360Substitute evaluated sums into the expression28+n2+162n+40n360Simplify2n2+6n216This gives:12n2+12n+195+2n2+6n216Simplify52n2+132n21

(3)

SummationStepsSum1n!,n=1..

n=11n!Apply the ratio test, which determines if the series diverges usinglimnan+1an=LIf 0 ≤ L < 1 then n=0an converges absolutely If L > 1 then n=0an diverges If L = 1 then no conclusion is possible So we getlimn1n+1!1n!Simplify inside expressionlimn1n+1Take the limit0Since the0LandL<1the infinte sum converges absolutelyn=11n! converges

(4)

Compatibility

• 

The Student:-Basics:-SummationSteps command was introduced in Maple 2024.

• 

For more information on Maple 2024 changes, see Updates in Maple 2024.

See Also

Student:-Basics

Student:-Basics:-ExpandSteps

Student:-Basics:-SimplifySteps