ImplicitDiffSolution - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Student[Calculus1]

  

ImplicitDiffSolution

  

generate steps for implicit differentiation

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ImplicitDiffSolution( f, y, x, opts )

Parameters

f

-

algebraic equation

y

-

names or function of dependent variable

x

-

name of dependent variable

opts

-

(optional) options of the form keyword=value, where keyword is one of output, displaystyle, or animated

Description

• 

The ImplicitDiffSolution command computes the partial derivative of the function, y with respect to x, showing the steps required to make the computation. The input f defines y as a function of x implicitly. It must be an equation in x and y or an algebraic expression, which is understood to be equated to zero.

• 

All other names, which appear in the input f and the derivative variable(s) x and are not of type constant, are treated as independent variables.

• 

Optional arguments output, displaystyle, and animated can be passed to control the style of output.  These options are described in Student:-Basics:-OutputStepsRecord. The return value is controlled by the output option.

• 

This function is part of the Student:-Calculus1 package.

Examples

withStudent:-Calculus1:

ImplicitDiffSolutionx2+y3=1,y,x

Implicit Differentiation Stepsy3+x2=1Rewriteyas a functionyx:yx3+x2=1Differentiate the left sideⅆⅆxyx3+x21. Apply thesumruleRecall the definition of thesumruleⅆⅆxfx+gx=ⅆⅆxfx+ⅆⅆxgxfx=yx3gx=x2This gives:ⅆⅆxyx3+ⅆⅆxx22. Apply thepowerrule to the termⅆⅆxx2Recall the definition of thepowerrulexxn=nxn1This means:ⅆⅆxx2=2x1So,ⅆⅆxx2=2xWe can rewrite the derivative as:ⅆⅆxyx3+2x3. Apply thechainrule to the termyx3Recall the definition of thechainruleⅆⅆxfgx=f'gxⅆⅆxgxOutside functionfv=v3Inside functiongx=yxDerivative of outside functionⅆⅆvfv=3v2Apply compositionf'gx=3yx2Derivative of inside functionⅆⅆxgx=ⅆⅆxyxPut it all togetherⅆⅆxfgxⅆⅆxgx=3yx2ⅆⅆxyxThis gives:3yx2ⅆⅆxyx+2xThe final result is3yx2ⅆⅆxyx+2xDifferentiate the right sideⅆⅆx14. Apply theconstantrule to the termⅆⅆx1Recall the definition of theconstantruleⅆCⅆx=0This means:ⅆⅆx1=0We can now rewrite the derivative as:0Rewriteⅆⅆxyxasy'and solve fory'3y2y'+2x=0Subtract2xfrom both sides3y2y'+2x2x=02xSimplify3y2y'=−2xDivide both sides by3y2y'3y23y2=−2x3y2Simplifyy'=2x3y2Solutiony'=2x3y2

(1)

ImplicitDiffSolutionax3y2yz=z2,yx,z,x

Implicit Differentiation Stepsax3y2yz=z2Rewriteyas a functionyx,z:ax3yx,z2yx,zz=z2Differentiate the left sidexax3yx,z2yx,zz1. Apply thesumruleRecall the definition of thesumruleⅆⅆxfx+gx=ⅆⅆxfx+ⅆⅆxgxfx=ax3yx,zgx=2yx,zzThis gives:xax3yx,z+x2yx,zz2. Apply theconstant multiplerule to the termxax3yx,zRecall the definition of theconstant multiplerulexCfx=CⅆⅆxfxThis means:xax3yx,z=axx3yx,zWe can rewrite the derivative as:axx3yx,z+x2yx,zz3. Apply theproductruleRecall the definition of theproductruleⅆⅆxfxgx=ⅆⅆxfxgx+fxⅆⅆxgxfx=x3gx=yx,zThis gives:aⅆⅆxx3yx,z+x3xyx,z+x2yx,zz4. Apply thepowerrule to the termⅆⅆxx3Recall the definition of thepowerrulexxn=nxn1This means:ⅆⅆxx3=3x2We can rewrite the derivative as:a3x2yx,z+x3xyx,z+x2yx,zz5. Apply theconstant multiplerule to the termx2yx,zzRecall the definition of theconstant multiplerulexCfx=CⅆⅆxfxThis means:x2yx,zz=2zxyx,zWe can rewrite the derivative as:a3x2yx,z+x3xyx,z+2xyx,zzThe final result isa3x2yx,z+x3xyx,z21zxyx,zDifferentiate the right sidexz26. Apply theconstantrule to the termxz2Recall the definition of theconstantruleⅆCⅆx=0This means:xz2=0We can now rewrite the derivative as:0Rewritexyx,zasy'and solve fory'ax3y'+3x2y21zy'=0Multiply through:ax3y'+3x2y=ax3y'+3ax2yax3y'+3ax2y+−2y'z=0Subtract3ax2yfrom both sidesax3y'+3ax2y+−2y'z3ax2y=03ax2ySimplifyax3y'+−2y'z=3ax2yFind common denominatorzax3y'z+−2y'z=3ax2ySum over common denominatorzax3y'2y'z=3ax2yMultiply rhs by denominator of lhszax3y'2y'zz=z3ax2ySimplifyzax3y'2y'=3ax2yzFactory'ax3z2=3ax2yzDivide both sides byax3z2y'ax3z2ax3z2=3ax2yzax3z2Simplifyy'=3ax2yzax3z2Solutiony'=3ax2yzax3z2

(2)

Output can be shortened by declaring some rules to be understood

Understanddiff,constant,power,constantmultiple

Diff=constant,power,constantmultiple

(3)

ImplicitDiffSolutiony3+x2=1,y,x

Implicit Differentiation Stepsy3+x2=1Rewriteyas a functionyx:yx3+x2=1Differentiate the left sideⅆⅆxyx3+x21. Apply thesumruleRecall the definition of thesumruleⅆⅆxfx+gx=ⅆⅆxfx+ⅆⅆxgxfx=yx3gx=x2This gives:ⅆⅆxyx3+ⅆⅆxx22. Apply thepowerrule to the termⅆⅆxx2ⅆⅆxyx3+2x3. Apply thechainrule to the termyx3Recall the definition of thechainruleⅆⅆxfgx=f'gxⅆⅆxgxOutside functionfv=v3Inside functiongx=yxDerivative of outside functionⅆⅆvfv=3v2Apply compositionf'gx=3yx2Derivative of inside functionⅆⅆxgx=ⅆⅆxyxPut it all togetherⅆⅆxfgxⅆⅆxgx=3yx2ⅆⅆxyxThis gives:3yx2ⅆⅆxyx+2xThe final result is3yx2ⅆⅆxyx+2xDifferentiate the right sideⅆⅆx14. Apply theconstantrule to the termⅆⅆx10Rewriteⅆⅆxyxasy'and solve fory'3y2y'+2x=0Subtract2xfrom both sides3y2y'+2x2x=02xSimplify3y2y'=−2xDivide both sides by3y2y'3y23y2=−2x3y2Simplifyy'=2x3y2Solutiony'=2x3y2

(4)

Compatibility

• 

The Student:-Calculus1:-ImplicitDiffSolution command was introduced in Maple 2023.

• 

For more information on Maple 2023 changes, see Updates in Maple 2023.

See Also

implicitdiff

Student:-Basics

Student:-Basics:-SolveSteps

Student:-Calculus1

Student:-Calculus1:-ShowSolution