Simpson's Rule
Calling Sequence
Parameters
Description
Examples
ApproximateInt(f(x), x = a..b, method = simpson, opts)
ApproximateInt(f(x), a..b, method = simpson, opts)
ApproximateInt(Int(f(x), x = a..b), method = simpson, opts)
f(x)
-
algebraic expression in variable 'x'
x
name; specify the independent variable
a, b
algebraic expressions; specify the interval
opts
equation(s) of the form option=value where option is one of boxoptions, functionoptions, iterations, method, outline, output, partition, pointoptions, refinement, showarea, showfunction, showpoints, subpartition, view, or Student plot options; specify output options
The ApproximateInt(f(x), x = a..b, method = simpson, opts) command approximates the integral of f(x) from a to b by using Simpson's rule. The first two arguments (function expression and range) can be replaced by a definite integral.
If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.
Given a partition P=a=x0,x1,...,xN=b of the interval a,b, Simpson's rule approximates the integral on each subinterval xi−1,xi by integrating the quadratic function that interpolates the three points xi−1,f⁡xi−1, xi−12+xi2,f⁡xi−12+xi2, and xi,f⁡xi. This value is
xi−xi−1⁢f⁡xi−1+4⁢f⁡xi−12+xi2+f⁡xi6
In the case that the widths of the subintervals are equal, the approximation can be written as
b−a⁢f⁡x0+4⁢f⁡x02+x12+2⁢f⁡x1+4⁢f⁡x12+x22+2⁢f⁡x2+...+f⁡xN6⁢N
Traditionally, Simpson's rule is written as: given N where N is an even integer and given equally spaced points a=x0,x1,x2,...,xN=b, an approximation to the integral ∫abf⁡xⅆx is
b−a⁢f⁡x0+4⁢f⁡x1+2⁢f⁡x2+4⁢f⁡x3+2⁢f⁡x4+...+f⁡xN3⁢N
By default, the interval is divided into 10 equal-sized subintervals.
For the options opts, see the ApproximateInt help page.
This rule can be applied interactively, through the ApproximateInt Tutor.
polynomial≔CurveFittingPolynomialInterpolation⁡x0,x0+x12,x1,f⁡0,f⁡12,f⁡1,z:
integrated≔int⁡polynomial,z=x0..x1:
factor⁡integrated
−x0−x1⁢f⁡0+f⁡1+4⁢f⁡126
with⁡StudentCalculus1:
ApproximateInt⁡sin⁡x,x=0..5,method=simpson
sin⁡1943+sin⁡512+sin⁡36+sin⁡1343+sin⁡726+sin⁡1543+sin⁡46+sin⁡1743+sin⁡926+sin⁡543+sin⁡326+sin⁡743+sin⁡26+sin⁡943+sin⁡526+sin⁡1143+sin⁡143+sin⁡126+sin⁡343+sin⁡16
ApproximateInt⁡x⁢x−2⁢x−3,x=0..5,method=simpson,output=plot
ApproximateInt⁡tan⁡x−2⁢x,x=−1..1,method=simpson,output=plot,partition=50
To play the following animation in this help page, right-click (Control-click, on Mac) the plot to display the context menu. Select Animation > Play.
ApproximateInt⁡ln⁡x,1..100,method=simpson,output=animation
See Also
Boole's Rule
Newton-Cotes Rules
plot/options
Simpson's 3/8 Rule
Student
Student plot options
Student[Calculus1]
Student[Calculus1][ApproximateInt]
Student[Calculus1][ApproximateIntTutor]
Student[Calculus1][RiemannSum]
Student[Calculus1][VisualizationOverview]
Trapezoidal Rule
Download Help Document