Student[LinearAlgebra]
ReflectionMatrix
construct a reflection Matrix
Calling Sequence
Parameters
Description
Examples
ReflectionMatrix(v)
v
-
Vector; normal to the reflection subspace
The ReflectionMatrix(v) command returns the m⁢x⁢m reflection Matrix, R, determined by the Vector v, where m=Dimension⁡v. Thus R·v=−v and R·w=w for all w such that v·w=0.
In two-dimensional space, the reflection subspace is a line through the origin. If the equation of this line is y=m⁢x, or m⁢x−y=0, then v=m,−1.
In three-dimensional space, the reflection subspace is a plane through the origin.
with⁡StudentLinearAlgebra:
Reflect through the line y=-x:
ReflectionMatrix⁡1,1
0−1−10
ReflectionMatrix⁡a,b,c
−a2+b2+c2a2+b2+c2−2⁢a⁢ba2+b2+c2−2⁢a⁢ca2+b2+c2−2⁢a⁢ba2+b2+c2a2−b2+c2a2+b2+c2−2⁢b⁢ca2+b2+c2−2⁢a⁢ca2+b2+c2−2⁢b⁢ca2+b2+c2a2+b2−c2a2+b2+c2
ReflectionMatrix⁡1,2,3,4
1415−215−15−415−2151115−25−815−15−2525−45−415−815−45−115
See Also
Student[LinearAlgebra][RotationMatrix]
Download Help Document