ODE Steps for Cauchy-Euler Equations
Overview
Examples
This help page gives a few examples of using the command ODESteps to solve Cauchy-Euler equations.
See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.
with⁡Student:-ODEs:
ode1≔x2⁢diff⁡y⁡x,x,x−4⁢x⁢diff⁡y⁡x,x+2⁢y⁡x=0
ode1≔x2⁢ⅆ2ⅆx2y⁡x−4⁢x⁢ⅆⅆxy⁡x+2⁢y⁡x=0
ODESteps⁡ode1
Let's solvex2⁢ⅆ2ⅆx2y⁡x−4⁢x⁢ⅆⅆxy⁡x+2⁢y⁡x=0•Highest derivative means the order of the ODE is2ⅆ2ⅆx2y⁡x•Isolate 2nd derivativeⅆ2ⅆx2y⁡x=−2⁢y⁡xx2+4⁢ⅆⅆxy⁡xx•Group terms withy⁡xon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2y⁡x−4⁢ⅆⅆxy⁡xx+2⁢y⁡xx2=0•Multiply by denominators of the ODEx2⁢ⅆ2ⅆx2y⁡x−4⁢x⁢ⅆⅆxy⁡x+2⁢y⁡x=0•Make a change of variablest=ln⁡x▫Substitute the change of variables back into the ODE◦Calculate the1stderivative ofywith respect tox, using the chain ruleⅆⅆxy⁡x=ⅆⅆty⁡t⁢ⅆⅆxt⁡x◦Compute derivativeⅆⅆxy⁡x=ⅆⅆty⁡tx◦Calculate the2ndderivative ofywith respect tox, using the chain ruleⅆ2ⅆx2y⁡x=ⅆ2ⅆt2y⁡t⁢ⅆⅆxt⁡x2+ⅆ2ⅆx2t⁡x⁢ⅆⅆty⁡t◦Compute derivativeⅆ2ⅆx2y⁡x=ⅆ2ⅆt2y⁡tx2−ⅆⅆty⁡tx2Substitute the change of variables back into the ODEx2⁢ⅆ2ⅆt2y⁡tx2−ⅆⅆty⁡tx2−4⁢ⅆⅆty⁡t+2⁢y⁡t=0•Simplifyⅆ2ⅆt2y⁡t−5⁢ⅆⅆty⁡t+2⁢y⁡t=0•Characteristic polynomial of ODEr2−5⁢r+2=0•Use quadratic formula to solve forrr=5±172•Roots of the characteristic polynomialr=52−172,52+172•1st solution of the ODEy1⁡t=ⅇ52−172⁢t•2nd solution of the ODEy2⁡t=ⅇ52+172⁢t•General solution of the ODEy⁡t=C1⁢y1⁡t+C2⁢y2⁡t•Substitute in solutionsy⁡t=C1⁢ⅇ52−172⁢t+C2⁢ⅇ52+172⁢t•Change variables back usingt=ln⁡xy⁡x=C1⁢ⅇ52−172⁢ln⁡x+C2⁢ⅇ52+172⁢ln⁡x•Simplifyy⁡x=x52⁢x−172⁢C1+x172⁢C2
ode2≔x3⁢diff⁡y⁡x,x,x,x+3⁢x2⁢diff⁡y⁡x,x,x−6⁢x⁢diff⁡y⁡x,x−6⁢y⁡x=0
ode2≔x3⁢ⅆ3ⅆx3y⁡x+3⁢x2⁢ⅆ2ⅆx2y⁡x−6⁢x⁢ⅆⅆxy⁡x−6⁢y⁡x=0
ODESteps⁡ode2
See Also
diff
Int
Student
Student[ODEs]
Student[ODEs][ODESteps]
Download Help Document