Second Order ODEs - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ODE Steps for Second Order ODEs

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve second order ordinary differential equations.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

ode12xdiffyx,x9x2+2diffyx,x+x2+1diffyx,x,x=0

ode12xⅆⅆxyx9x2+2ⅆⅆxyx+x2+1ⅆ2ⅆx2yx=0

(1)

ODEStepsode1

Let's solve2xⅆⅆxyx9x2+2ⅆⅆxyx+x2+1ⅆ2ⅆx2yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxMake substitutionu=ⅆⅆxyxto reduce order of ODE2xux9x2+2ux+x2+1ⅆⅆxux=0Check if ODE is exactODE is exact if the lhs is the total derivative of aC2functionⅆⅆxFx,ux=0Compute derivative of lhsxFx,u+uFx,uⅆⅆxux=0Evaluate derivatives2x=2xCondition met, ODE is exactExact ODE implies solution will be of this formFx,u=C1,Mx,u=xFx,u,Nx,u=uFx,uSolve forFx,uby integratingMx,uwith respect toxFx,u=2ux9x2ⅆx+_F1uEvaluate integralFx,u=x2u3x3+_F1uTake derivative ofFx,uwith respect touNx,u=uFx,uCompute derivativex2+2u+1=x2+ⅆⅆu_F1uIsolate forⅆⅆu_F1uⅆⅆu_F1u=2u+1Solve for_F1u_F1u=u2+uSubstitute_F1uinto equation forFx,uFx,u=x2u3x3+u2+uSubstituteFx,uinto the solution of the ODEx2u3x3+u2+u=C1Solve foruxux=x2212x4+12x3+2x2+4C1+12,ux=x2212+x4+12x3+2x2+4C1+12Solve 1st ODE foruxux=x2212x4+12x3+2x2+4C1+12Make substitutionu=ⅆⅆxyxⅆⅆxyx=x2212x4+12x3+2x2+4C1+12Integrate both sides to solve foryxⅆⅆxyxⅆx=x2212x4+12x3+2x2+4C1+12ⅆx+C2Compute lhsyx=x2212x4+12x3+2x2+4C1+12ⅆx+C2Solve 2nd ODE foruxux=x2212+x4+12x3+2x2+4C1+12Make substitutionu=ⅆⅆxyxⅆⅆxyx=x2212+x4+12x3+2x2+4C1+12Integrate both sides to solve foryxⅆⅆxyxⅆx=x2212+x4+12x3+2x2+4C1+12ⅆx+C2Compute lhsyx=x2212+x4+12x3+2x2+4C1+12ⅆx+C2

(2)

ode2diffyx,x,xdiffyx,xxexpx=0

ode2ⅆ2ⅆx2yxⅆⅆxyxxⅇx=0

(3)

ODEStepsode2

Let's solveⅆ2ⅆx2yxⅆⅆxyxxⅇx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=ⅆⅆxyx+xⅇxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yxⅆⅆxyx=xⅇxCharacteristic polynomial of homogeneous ODEr2r=0Factor the characteristic polynomialrr1=0Roots of the characteristic polynomialr=0,11st solution of the homogeneous ODEy1x=12nd solution of the homogeneous ODEy2x=ⅇxGeneral solution of the ODEyx=C1y1x+C2y2x+ypxSubstitute in solutions of the homogeneous ODEyx=C1+C2ⅇx+ypxFind a particular solutionypxof the ODEUse variation of parameters to findypherefxis the forcing functionypx=y1xy2xfxWy1x,y2xⅆx+y2xy1xfxWy1x,y2xⅆx,fx=xⅇxWronskian of solutions of the homogeneous equationWy1x,y2x=1ⅇx0ⅇxCompute WronskianWy1x,y2x=ⅇxSubstitute functions into equation forypxypx=xⅇxⅆx+ⅇxxⅆxCompute integralsypx=ⅇx1x+12x2Substitute particular solution into general solution to ODEyx=C1+C2ⅇx+ⅇx1x+12x2

(4)

ode3diffyx,x,x+5diffyx,x2yx=0

ode3ⅆ2ⅆx2yx+5ⅆⅆxyx2yx=0

(5)

ODEStepsode3

Let's solveⅆ2ⅆx2yx+5ⅆⅆxyx2yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxDefine new dependent variableuux=ⅆⅆxyxComputeⅆ2ⅆx2yxⅆⅆxux=ⅆ2ⅆx2yxUse chain rule on the lhsⅆⅆxyxⅆⅆyuy=ⅆ2ⅆx2yxSubstitute in the definition ofuuyⅆⅆyuy=ⅆ2ⅆx2yxMake substitutionsⅆⅆxyx=uy,ⅆ2ⅆx2yx=uyⅆⅆyuyto reduce order of ODEuyⅆⅆyuy+5uy2y=0Separate variablesⅆⅆyuyuy=5yIntegrate both sides with respect toyⅆⅆyuyuyⅆy=5yⅆy+C1Evaluate integrallnuy=5lny+C1Solve foruyuy=ⅇC1y5Solve 1st ODE foruyuy=ⅇC1y5Revert to original variables with substitutionuy=ⅆⅆxyx,y=yxⅆⅆxyx=ⅇC1yx5Separate variablesⅆⅆxyxyx5=ⅇC1Integrate both sides with respect toxⅆⅆxyxyx5ⅆx=ⅇC1ⅆx+C2Evaluate integralyx66=ⅇC1x+C2Solve foryxyx=6ⅇC1x+6C216,yx=6ⅇC1x+6C216

(6)

ode4diffyx,x,xdiffyx,x6yx=0

ode4ⅆ2ⅆx2yxⅆⅆxyx6yx=0

(7)

ODEStepsode4

Let's solveⅆ2ⅆx2yxⅆⅆxyx6yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxCharacteristic polynomial of ODEr2r6=0Factor the characteristic polynomialr+2r3=0Roots of the characteristic polynomialr=−2,31st solution of the ODEy1x=ⅇ2x2nd solution of the ODEy2x=ⅇ3xGeneral solution of the ODEyx=C1y1x+C2y2xSubstitute in solutionsyx=C1ⅇ2x+C2ⅇ3x

(8)

ode5diffyx,x,xdiffyx,x=x2+6yx

ode5ⅆ2ⅆx2yxⅆⅆxyx=x2+6yx

(9)

ODEStepsode5

Let's solveⅆ2ⅆx2yxⅆⅆxyx=x2+6yxHighest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=ⅆⅆxyx+x2+6yxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yxⅆⅆxyx6yx=x2Characteristic polynomial of homogeneous ODEr2r6=0Factor the characteristic polynomialr+2r3=0Roots of the characteristic polynomialr=−2,31st solution of the homogeneous ODEy1x=ⅇ2x2nd solution of the homogeneous ODEy2x=ⅇ3xGeneral solution of the ODEyx=C1y1x+C2y2x+ypxSubstitute in solutions of the homogeneous ODEyx=C1ⅇ2x+C2ⅇ3x+ypxFind a particular solutionypxof the ODEUse variation of parameters to findypherefxis the forcing functionypx=y1xy2xfxWy1x,y2xⅆx+y2xy1xfxWy1x,y2xⅆx,fx=x2Wronskian of solutions of the homogeneous equationWy1x,y2x=ⅇ2xⅇ3x2ⅇ2x3ⅇ3xCompute WronskianWy1x,y2x=5ⅇxSubstitute functions into equation forypxypx=ⅇ5xx2ⅇ3xⅆxx2ⅇ2xⅆxⅇ2x5Compute integralsypx=16x2+118x7108Substitute particular solution into general solution to ODEyx=C1ⅇ2x+C2ⅇ3xx26+x187108

(10)

ode6diffyx,x,x+4yx=4diffyx,x

ode6ⅆ2ⅆx2yx+4yx=4ⅆⅆxyx

(11)

ODEStepsode6

Let's solveⅆ2ⅆx2yx+4yx=4ⅆⅆxyxHighest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=4yx4ⅆⅆxyxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+4yx+4ⅆⅆxyx=0Characteristic polynomial of ODEr2+4r+4=0Factor the characteristic polynomialr+22=0Root of the characteristic polynomialr=−21st solution of the ODEy1x=ⅇ2xRepeated root, multiplyy1xbyxto ensure linear independencey2x=xⅇ2xGeneral solution of the ODEyx=C1y1x+C2y2xSubstitute in solutionsyx=C1ⅇ2x+C2xⅇ2x

(12)

ode75diffyx,x,x+20yx+15sinx=20diffyx,x

ode75ⅆ2ⅆx2yx+20yx+15sinx=20ⅆⅆxyx

(13)

ODEStepsode7

Let's solve5ⅆ2ⅆx2yx+20yx+15sinx=20ⅆⅆxyxHighest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=4yx3sinx4ⅆⅆxyxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+4yx+4ⅆⅆxyx=3sinxCharacteristic polynomial of homogeneous ODEr2+4r+4=0Factor the characteristic polynomialr+22=0Root of the characteristic polynomialr=−21st solution of the homogeneous ODEy1x=ⅇ2xRepeated root, multiplyy1xbyxto ensure linear independencey2x=xⅇ2xGeneral solution of the ODEyx=C1y1x+C2y2x+ypxSubstitute in solutions of the homogeneous ODEyx=C1ⅇ2x+C2xⅇ2x+ypxFind a particular solutionypxof the ODEUse variation of parameters to findypherefxis the forcing functionypx=y1xy2xfxWy1x,y2xⅆx+y2xy1xfxWy1x,y2xⅆx,fx=3sinxWronskian of solutions of the homogeneous equationWy1x,y2x=ⅇ2xxⅇ2x2ⅇ2xⅇ2x2xⅇ2xCompute WronskianWy1x,y2x=ⅇ4xSubstitute functions into equation forypxypx=3ⅇ2xsinxxⅇ2xⅆxxsinxⅇ2xⅆxCompute integralsypx=12cosx259sinx25Substitute particular solution into general solution to ODEyx=C1ⅇ2x+C2xⅇ2x+12cosx259sinx25

(14)

ode8diffyx,x,x+2yx+2diffyx,x=0

ode8ⅆ2ⅆx2yx+2yx+2ⅆⅆxyx=0

(15)

ODEStepsode8

Let's solveⅆ2ⅆx2yx+2yx+2ⅆⅆxyx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxCharacteristic polynomial of ODEr2+2r+2=0Use quadratic formula to solve forrr=−2±−42Roots of the characteristic polynomialr=−1I,−1+I1st solution of the ODEy1x=ⅇxcosx2nd solution of the ODEy2x=ⅇxsinxGeneral solution of the ODEyx=C1y1x+C2y2xSubstitute in solutionsyx=C1ⅇxcosx+C2ⅇxsinx

(16)

ode9diffyx,x,x+2yx2diffyx,x=expx

ode9ⅆ2ⅆx2yx+2yx2ⅆⅆxyx=ⅇx

(17)

ODEStepsode9

Let's solveⅆ2ⅆx2yx+2yx2ⅆⅆxyx=ⅇxHighest derivative means the order of the ODE is2ⅆ2ⅆx2yxCharacteristic polynomial of homogeneous ODEr22r+2=0Use quadratic formula to solve forrr=2±−42Roots of the characteristic polynomialr=1I,1+I1st solution of the homogeneous ODEy1x=ⅇxcosx2nd solution of the homogeneous ODEy2x=ⅇxsinxGeneral solution of the ODEyx=C1y1x+C2y2x+ypxSubstitute in solutions of the homogeneous ODEyx=C1ⅇxcosx+C2ⅇxsinx+ypxFind a particular solutionypxof the ODEUse variation of parameters to findypherefxis the forcing functionypx=y1xy2xfxWy1x,y2xⅆx+y2xy1xfxWy1x,y2xⅆx,fx=ⅇxWronskian of solutions of the homogeneous equationWy1x,y2x=ⅇxcosxⅇxsinxⅇxcosxⅇxsinxⅇxsinx+ⅇxcosxCompute WronskianWy1x,y2x=ⅇ2xSubstitute functions into equation forypxypx=ⅇxcosxsinxⅆx+sinxcosxⅆxCompute integralsypx=ⅇxSubstitute particular solution into general solution to ODEyx=C1ⅇxcosx+C2ⅇxsinx+ⅇx

(18)

See Also

diff

Int

Student

Student[ODEs]

Student[ODEs][ODESteps]