ODE Steps for Special Function Solutions
Overview
Examples
This help page gives a few examples of using the command ODESteps to solve ordinary differential equations in terms of special functions.
See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.
with⁡Student:-ODEs:
ode1≔x2⁢diff⁡y⁡x,x,x+4⁢x⁢diff⁡y⁡x,x+25⁢x2−9⁢y⁡x=0
ode1≔x2⁢ⅆ2ⅆx2y⁡x+4⁢x⁢ⅆⅆxy⁡x+25⁢x2−9⁢y⁡x=0
ODESteps⁡ode1
Let's solvex2⁢ⅆ2ⅆx2y⁡x+4⁢x⁢ⅆⅆxy⁡x+25⁢x2−9⁢y⁡x=0•Highest derivative means the order of the ODE is2ⅆ2ⅆx2y⁡x•Isolate 2nd derivativeⅆ2ⅆx2y⁡x=−25⁢x2−9⁢y⁡xx2−4⁢ⅆⅆxy⁡xx•Group terms withy⁡xon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2y⁡x+4⁢ⅆⅆxy⁡xx+25⁢x2−9⁢y⁡xx2=0•Simplify ODEx2⁢ⅆ2ⅆx2y⁡x+25⁢y⁡x⁢x2+4⁢x⁢ⅆⅆxy⁡x−9⁢y⁡x=0•Make a change of variablest=5⁢x•Computeⅆⅆxy⁡xⅆⅆxy⁡x=5⁢ⅆⅆty⁡t•Compute second derivativeⅆ2ⅆx2y⁡x=25⁢ⅆ2ⅆt2y⁡t•Apply change of variables to the ODEt2⁢ⅆ2ⅆt2y⁡t+y⁡t⁢t2+4⁢t⁢ⅆⅆty⁡t−9⁢y⁡t=0•Make a change of variablesy⁡t=u⁡tt32•Computeⅆⅆty⁡tⅆⅆty⁡t=−3⁢u⁡t2⁢t52+ⅆⅆtu⁡tt32•Computeⅆ2ⅆt2y⁡tⅆ2ⅆt2y⁡t=15⁢u⁡t4⁢t72−3⁢ⅆⅆtu⁡tt52+ⅆ2ⅆt2u⁡tt32•Apply change of variables to the ODEu⁡t⁢t2+ⅆ2ⅆt2u⁡t⁢t2+ⅆⅆtu⁡t⁢t−45⁢u⁡t4=0•ODE is now of the Bessel form•Solution to Bessel ODEu⁡t=C1⁢BesselJ⁡3⁢52,t+C2⁢BesselY⁡3⁢52,t•Make the change fromy⁡xback toy⁡ty⁡t=C1⁢BesselJ⁡3⁢52,t+C2⁢BesselY⁡3⁢52,tt32•Make the change fromtback toxy⁡x=C1⁢BesselJ⁡3⁢52,5⁢x+C2⁢BesselY⁡3⁢52,5⁢x⁢525⁢x32
ode2≔−x2+1⁢diff⁡y⁡x,x,x−x⁢diff⁡y⁡x,x+y⁡x=0
ode2≔−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+y⁡x=0
ODESteps⁡ode2
Let's solve−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+y⁡x=0•Highest derivative means the order of the ODE is2ⅆ2ⅆx2y⁡x•Isolate 2nd derivativeⅆ2ⅆx2y⁡x=y⁡xx2−1−x⁢ⅆⅆxy⁡xx2−1•Group terms withy⁡xon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2y⁡x+x⁢ⅆⅆxy⁡xx2−1−y⁡xx2−1=0•Multiply by denominators of ODE−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+y⁡x=0•Make a change of variablesθ=arccos⁡x•Calculateⅆⅆxy⁡xwith change of variablesⅆⅆxy⁡x=ⅆⅆθy⁡θ⁢ⅆⅆxθ⁡x•Compute1stderivativeⅆⅆxy⁡xⅆⅆxy⁡x=−ⅆⅆθy⁡θ−x2+1•Calculateⅆ2ⅆx2y⁡xwith change of variablesⅆ2ⅆx2y⁡x=ⅆ2ⅆθ2y⁡θ⁢ⅆⅆxθ⁡x2+ⅆ2ⅆx2θ⁡x⁢ⅆⅆθy⁡θ•Compute2ndderivativeⅆ2ⅆx2y⁡xⅆ2ⅆx2y⁡x=ⅆ2ⅆθ2y⁡θ−x2+1−x⁢ⅆⅆθy⁡θ−x2+132•Apply the change of variables to the ODE−x2+1⁢ⅆ2ⅆθ2y⁡θ−x2+1−x⁢ⅆⅆθy⁡θ−x2+132+x⁢ⅆⅆθy⁡θ−x2+1+y⁡x=0•Multiply through−ⅆ2ⅆθ2y⁡θ⁢x2−x2+1+ⅆ2ⅆθ2y⁡θ−x2+1+x3⁢ⅆⅆθy⁡θ−x2+132−x⁢ⅆⅆθy⁡θ−x2+132+x⁢ⅆⅆθy⁡θ−x2+1+y⁡x=0•Simplify ODEⅆ2ⅆθ2y⁡θ+y⁡x=0•ODE is that of a harmonic oscillator with given general solutiony⁡θ=C1⁢sin⁡θ+C2⁢cos⁡θ•Revert back toxy⁡x=C1⁢sin⁡arccos⁡x+C2⁢cos⁡arccos⁡x•Use trig identity to simplifysin⁡arccos⁡xsin⁡arccos⁡x=−x2+1•Simplify solution to the ODEy⁡x=C1⁢−x2+1+C2⁢x
ode3≔−x2+1⁢diff⁡y⁡x,x,x−x⁢diff⁡y⁡x,x+4⁢y⁡x=0
ode3≔−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+4⁢y⁡x=0
ODESteps⁡ode3
Let's solve−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+4⁢y⁡x=0•Highest derivative means the order of the ODE is2ⅆ2ⅆx2y⁡x•Isolate 2nd derivativeⅆ2ⅆx2y⁡x=4⁢y⁡xx2−1−x⁢ⅆⅆxy⁡xx2−1•Group terms withy⁡xon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2y⁡x+x⁢ⅆⅆxy⁡xx2−1−4⁢y⁡xx2−1=0•Multiply by denominators of ODE−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+4⁢y⁡x=0•Make a change of variablesθ=arccos⁡x•Calculateⅆⅆxy⁡xwith change of variablesⅆⅆxy⁡x=ⅆⅆθy⁡θ⁢ⅆⅆxθ⁡x•Compute1stderivativeⅆⅆxy⁡xⅆⅆxy⁡x=−ⅆⅆθy⁡θ−x2+1•Calculateⅆ2ⅆx2y⁡xwith change of variablesⅆ2ⅆx2y⁡x=ⅆ2ⅆθ2y⁡θ⁢ⅆⅆxθ⁡x2+ⅆ2ⅆx2θ⁡x⁢ⅆⅆθy⁡θ•Compute2ndderivativeⅆ2ⅆx2y⁡xⅆ2ⅆx2y⁡x=ⅆ2ⅆθ2y⁡θ−x2+1−x⁢ⅆⅆθy⁡θ−x2+132•Apply the change of variables to the ODE−x2+1⁢ⅆ2ⅆθ2y⁡θ−x2+1−x⁢ⅆⅆθy⁡θ−x2+132+x⁢ⅆⅆθy⁡θ−x2+1+4⁢y⁡x=0•Multiply through−ⅆ2ⅆθ2y⁡θ⁢x2−x2+1+ⅆ2ⅆθ2y⁡θ−x2+1+x3⁢ⅆⅆθy⁡θ−x2+132−x⁢ⅆⅆθy⁡θ−x2+132+x⁢ⅆⅆθy⁡θ−x2+1+4⁢y⁡x=0•Simplify ODEⅆ2ⅆθ2y⁡θ+4⁢y⁡x=0•ODE is that of a harmonic oscillator with given general solutiony⁡θ=C1⁢sin⁡2⁢θ+C2⁢cos⁡2⁢θ•Revert back toxy⁡x=C1⁢sin⁡2⁢arccos⁡x+C2⁢cos⁡2⁢arccos⁡x•Apply double angle identities to solutiony⁡x=C1⁢sin⁡arccos⁡x⁢cos⁡arccos⁡x+C2⁢2⁢cos⁡arccos⁡x2−1•Use trig identity to simplify sinsin⁡arccos⁡x=−x2+1•Simplify solution to the ODEy⁡x=C1⁢x⁢−x2+1+C2⁢2⁢x2−1
ode4≔−x2+1⁢diff⁡y⁡x,x,x−x⁢diff⁡y⁡x,x+9⁢y⁡x=0
ode4≔−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+9⁢y⁡x=0
ODESteps⁡ode4
Let's solve−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+9⁢y⁡x=0•Highest derivative means the order of the ODE is2ⅆ2ⅆx2y⁡x•Isolate 2nd derivativeⅆ2ⅆx2y⁡x=9⁢y⁡xx2−1−x⁢ⅆⅆxy⁡xx2−1•Group terms withy⁡xon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2y⁡x+x⁢ⅆⅆxy⁡xx2−1−9⁢y⁡xx2−1=0•Multiply by denominators of ODE−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+9⁢y⁡x=0•Make a change of variablesθ=arccos⁡x•Calculateⅆⅆxy⁡xwith change of variablesⅆⅆxy⁡x=ⅆⅆθy⁡θ⁢ⅆⅆxθ⁡x•Compute1stderivativeⅆⅆxy⁡xⅆⅆxy⁡x=−ⅆⅆθy⁡θ−x2+1•Calculateⅆ2ⅆx2y⁡xwith change of variablesⅆ2ⅆx2y⁡x=ⅆ2ⅆθ2y⁡θ⁢ⅆⅆxθ⁡x2+ⅆ2ⅆx2θ⁡x⁢ⅆⅆθy⁡θ•Compute2ndderivativeⅆ2ⅆx2y⁡xⅆ2ⅆx2y⁡x=ⅆ2ⅆθ2y⁡θ−x2+1−x⁢ⅆⅆθy⁡θ−x2+132•Apply the change of variables to the ODE−x2+1⁢ⅆ2ⅆθ2y⁡θ−x2+1−x⁢ⅆⅆθy⁡θ−x2+132+x⁢ⅆⅆθy⁡θ−x2+1+9⁢y⁡x=0•Multiply through−ⅆ2ⅆθ2y⁡θ⁢x2−x2+1+ⅆ2ⅆθ2y⁡θ−x2+1+x3⁢ⅆⅆθy⁡θ−x2+132−x⁢ⅆⅆθy⁡θ−x2+132+x⁢ⅆⅆθy⁡θ−x2+1+9⁢y⁡x=0•Simplify ODEⅆ2ⅆθ2y⁡θ+9⁢y⁡x=0•ODE is that of a harmonic oscillator with given general solutiony⁡θ=C1⁢sin⁡3⁢θ+C2⁢cos⁡3⁢θ•Revert back toxy⁡x=C1⁢sin⁡3⁢arccos⁡x+C2⁢cos⁡3⁢arccos⁡x
ode5≔−x2+1⁢diff⁡y⁡x,x,x−x⁢diff⁡y⁡x,x−4⁢y⁡x=0
ode5≔−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x−4⁢y⁡x=0
ODESteps⁡ode5
Let's solve−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x−4⁢y⁡x=0•Highest derivative means the order of the ODE is2ⅆ2ⅆx2y⁡x•Isolate 2nd derivativeⅆ2ⅆx2y⁡x=−4⁢y⁡xx2−1−x⁢ⅆⅆxy⁡xx2−1•Group terms withy⁡xon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2y⁡x+x⁢ⅆⅆxy⁡xx2−1+4⁢y⁡xx2−1=0•Multiply by denominators of ODE−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x−4⁢y⁡x=0•Make a change of variablesθ=arccos⁡x•Calculateⅆⅆxy⁡xwith change of variablesⅆⅆxy⁡x=ⅆⅆθy⁡θ⁢ⅆⅆxθ⁡x•Compute1stderivativeⅆⅆxy⁡xⅆⅆxy⁡x=−ⅆⅆθy⁡θ−x2+1•Calculateⅆ2ⅆx2y⁡xwith change of variablesⅆ2ⅆx2y⁡x=ⅆ2ⅆθ2y⁡θ⁢ⅆⅆxθ⁡x2+ⅆ2ⅆx2θ⁡x⁢ⅆⅆθy⁡θ•Compute2ndderivativeⅆ2ⅆx2y⁡xⅆ2ⅆx2y⁡x=ⅆ2ⅆθ2y⁡θ−x2+1−x⁢ⅆⅆθy⁡θ−x2+132•Apply the change of variables to the ODE−x2+1⁢ⅆ2ⅆθ2y⁡θ−x2+1−x⁢ⅆⅆθy⁡θ−x2+132+x⁢ⅆⅆθy⁡θ−x2+1−4⁢y⁡x=0•Multiply through−ⅆ2ⅆθ2y⁡θ⁢x2−x2+1+ⅆ2ⅆθ2y⁡θ−x2+1+x3⁢ⅆⅆθy⁡θ−x2+132−x⁢ⅆⅆθy⁡θ−x2+132+x⁢ⅆⅆθy⁡θ−x2+1−4⁢y⁡x=0•Simplify ODE−4⁢y⁡x+ⅆ2ⅆθ2y⁡θ=0•ODE is second order linear with characteristic polynomial that is the difference of squares with given general solutiony⁡θ=C1⁢ⅇ2⁢θ+C2⁢ⅇ−2⁢θ•Revert back toxy⁡x=C1⁢ⅇ2⁢arccos⁡x+C2⁢ⅇ−2⁢arccos⁡x
See Also
diff
Int
Student
Student[ODEs]
Student[ODEs][ODESteps]
Download Help Document