Special Function Solutions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ODE Steps for Special Function Solutions

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve ordinary differential equations in terms of special functions.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

ode1x2diffyx,x,x+4xdiffyx,x+25x29yx=0

ode1x2ⅆ2ⅆx2yx+4xⅆⅆxyx+25x29yx=0

(1)

ODEStepsode1

Let's solvex2ⅆ2ⅆx2yx+4xⅆⅆxyx+25x29yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=25x29yxx24ⅆⅆxyxxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+4ⅆⅆxyxx+25x29yxx2=0Simplify ODEx2ⅆ2ⅆx2yx+25yxx2+4xⅆⅆxyx9yx=0Make a change of variablest=5xComputeⅆⅆxyxⅆⅆxyx=5ⅆⅆtytCompute second derivativeⅆ2ⅆx2yx=25ⅆ2ⅆt2ytApply change of variables to the ODEt2ⅆ2ⅆt2yt+ytt2+4tⅆⅆtyt9yt=0Make a change of variablesyt=utt32Computeⅆⅆtytⅆⅆtyt=3ut2t52+ⅆⅆtutt32Computeⅆ2ⅆt2ytⅆ2ⅆt2yt=15ut4t723ⅆⅆtutt52+ⅆ2ⅆt2utt32Apply change of variables to the ODEutt2+ⅆ2ⅆt2utt2+ⅆⅆtutt45ut4=0ODE is now of the Bessel formSolution to Bessel ODEut=C1BesselJ352,t+C2BesselY352,tMake the change fromyxback toytyt=C1BesselJ352,t+C2BesselY352,tt32Make the change fromtback toxyx=C1BesselJ352,5x+C2BesselY352,5x525x32

(2)

ode2x2+1diffyx,x,xxdiffyx,x+yx=0

ode2x2+1ⅆ2ⅆx2yxxⅆⅆxyx+yx=0

(3)

ODEStepsode2

Let's solvex2+1ⅆ2ⅆx2yxxⅆⅆxyx+yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=yxx21xⅆⅆxyxx21Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+xⅆⅆxyxx21yxx21=0Multiply by denominators of ODEx2+1ⅆ2ⅆx2yxxⅆⅆxyx+yx=0Make a change of variablesθ=arccosxCalculateⅆⅆxyxwith change of variablesⅆⅆxyx=ⅆⅆθyθⅆⅆxθxCompute1stderivativeⅆⅆxyxⅆⅆxyx=ⅆⅆθyθx2+1Calculateⅆ2ⅆx2yxwith change of variablesⅆ2ⅆx2yx=ⅆ2ⅆθ2yθⅆⅆxθx2+ⅆ2ⅆx2θxⅆⅆθyθCompute2ndderivativeⅆ2ⅆx2yxⅆ2ⅆx2yx=ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132Apply the change of variables to the ODEx2+1ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+yx=0Multiply throughⅆ2ⅆθ2yθx2x2+1+ⅆ2ⅆθ2yθx2+1+x3ⅆⅆθyθx2+132xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+yx=0Simplify ODEⅆ2ⅆθ2yθ+yx=0ODE is that of a harmonic oscillator with given general solutionyθ=C1sinθ+C2cosθRevert back toxyx=C1sinarccosx+C2cosarccosxUse trig identity to simplifysinarccosxsinarccosx=x2+1Simplify solution to the ODEyx=C1x2+1+C2x

(4)

ode3x2+1diffyx,x,xxdiffyx,x+4yx=0

ode3x2+1ⅆ2ⅆx2yxxⅆⅆxyx+4yx=0

(5)

ODEStepsode3

Let's solvex2+1ⅆ2ⅆx2yxxⅆⅆxyx+4yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=4yxx21xⅆⅆxyxx21Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+xⅆⅆxyxx214yxx21=0Multiply by denominators of ODEx2+1ⅆ2ⅆx2yxxⅆⅆxyx+4yx=0Make a change of variablesθ=arccosxCalculateⅆⅆxyxwith change of variablesⅆⅆxyx=ⅆⅆθyθⅆⅆxθxCompute1stderivativeⅆⅆxyxⅆⅆxyx=ⅆⅆθyθx2+1Calculateⅆ2ⅆx2yxwith change of variablesⅆ2ⅆx2yx=ⅆ2ⅆθ2yθⅆⅆxθx2+ⅆ2ⅆx2θxⅆⅆθyθCompute2ndderivativeⅆ2ⅆx2yxⅆ2ⅆx2yx=ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132Apply the change of variables to the ODEx2+1ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+4yx=0Multiply throughⅆ2ⅆθ2yθx2x2+1+ⅆ2ⅆθ2yθx2+1+x3ⅆⅆθyθx2+132xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+4yx=0Simplify ODEⅆ2ⅆθ2yθ+4yx=0ODE is that of a harmonic oscillator with given general solutionyθ=C1sin2θ+C2cos2θRevert back toxyx=C1sin2arccosx+C2cos2arccosxApply double angle identities to solutionyx=C1sinarccosxcosarccosx+C22cosarccosx21Use trig identity to simplify sinsinarccosx=x2+1Simplify solution to the ODEyx=C1xx2+1+C22x21

(6)

ode4x2+1diffyx,x,xxdiffyx,x+9yx=0

ode4x2+1ⅆ2ⅆx2yxxⅆⅆxyx+9yx=0

(7)

ODEStepsode4

Let's solvex2+1ⅆ2ⅆx2yxxⅆⅆxyx+9yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=9yxx21xⅆⅆxyxx21Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+xⅆⅆxyxx219yxx21=0Multiply by denominators of ODEx2+1ⅆ2ⅆx2yxxⅆⅆxyx+9yx=0Make a change of variablesθ=arccosxCalculateⅆⅆxyxwith change of variablesⅆⅆxyx=ⅆⅆθyθⅆⅆxθxCompute1stderivativeⅆⅆxyxⅆⅆxyx=ⅆⅆθyθx2+1Calculateⅆ2ⅆx2yxwith change of variablesⅆ2ⅆx2yx=ⅆ2ⅆθ2yθⅆⅆxθx2+ⅆ2ⅆx2θxⅆⅆθyθCompute2ndderivativeⅆ2ⅆx2yxⅆ2ⅆx2yx=ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132Apply the change of variables to the ODEx2+1ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+9yx=0Multiply throughⅆ2ⅆθ2yθx2x2+1+ⅆ2ⅆθ2yθx2+1+x3ⅆⅆθyθx2+132xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+9yx=0Simplify ODEⅆ2ⅆθ2yθ+9yx=0ODE is that of a harmonic oscillator with given general solutionyθ=C1sin3θ+C2cos3θRevert back toxyx=C1sin3arccosx+C2cos3arccosx

(8)

ode5x2+1diffyx,x,xxdiffyx,x4yx=0

ode5x2+1ⅆ2ⅆx2yxxⅆⅆxyx4yx=0

(9)

ODEStepsode5

Let's solvex2+1ⅆ2ⅆx2yxxⅆⅆxyx4yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=4yxx21xⅆⅆxyxx21Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+xⅆⅆxyxx21+4yxx21=0Multiply by denominators of ODEx2+1ⅆ2ⅆx2yxxⅆⅆxyx4yx=0Make a change of variablesθ=arccosxCalculateⅆⅆxyxwith change of variablesⅆⅆxyx=ⅆⅆθyθⅆⅆxθxCompute1stderivativeⅆⅆxyxⅆⅆxyx=ⅆⅆθyθx2+1Calculateⅆ2ⅆx2yxwith change of variablesⅆ2ⅆx2yx=ⅆ2ⅆθ2yθⅆⅆxθx2+ⅆ2ⅆx2θxⅆⅆθyθCompute2ndderivativeⅆ2ⅆx2yxⅆ2ⅆx2yx=ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132Apply the change of variables to the ODEx2+1ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132+xⅆⅆθyθx2+14yx=0Multiply throughⅆ2ⅆθ2yθx2x2+1+ⅆ2ⅆθ2yθx2+1+x3ⅆⅆθyθx2+132xⅆⅆθyθx2+132+xⅆⅆθyθx2+14yx=0Simplify ODE4yx+ⅆ2ⅆθ2yθ=0ODE is second order linear with characteristic polynomial that is the difference of squares with given general solutionyθ=C1ⅇ2θ+C2ⅇ2θRevert back toxyx=C1ⅇ2arccosx+C2ⅇ2arccosx

(10)

See Also

diff

Int

Student

Student[ODEs]

Student[ODEs][ODESteps]