NoIndependentVariable - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Student[ODEs][ReduceOrder]

  

NoIndependentVariable

  

Reduce the order of an ODE missing the independent variable

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

NoIndependentVariable(ODE)

NoIndependentVariable(ODE, y(x))

NoIndependentVariable(ODE, y(x), u(t))

Parameters

ODE

-

ordinary differential equation missing the independent variable

y

-

name; the dependent variable of the original ODE

x

-

name; the independent variable of the original ODE

u

-

name; the dependent variable for the reduced ODE

t

-

name; the independent variable for the reduced ODE

Description

• 

NoIndependentVariable finds the solution of an ODE which doesn't contain the independent variable other than via the dependent variable and its derivatives.

• 

The second argument, y(x), representing the variable for the existing ODE, is optional. It must be given however, if the dependent and independent variables cannot be determined from the ODE.

• 

The third argument, u(t), representing the variable for the reduced ODE, is optional. If it is not given, new independent and dependent variables will be chosen which do not conflict with the existing variables.

• 

The default output is a sequence consisting of the reduced ODE in terms of the new variables, followed by the transformation used to recover the original ODE from the reduced ODE.

• 

If an extra option solve or solve=true is also given, an attempt is made to solve the reduced ODE and return the general solution to the original ODE. If successful, the general solution of the original ODE will be returned.

Examples

withStudentODEs:

withStudentODEsReduceOrder:

Given a 2nd order ODE for y(x) which doesn't depend on x:

odediffyx,x,x+diffyx,x2yx=0

odeⅆ2ⅆx2yx+ⅆⅆxyx2yx=0

(1)

Find a reduction of order to a 1st order ODE, and the associated transformation:

reduced_ode,trNoIndependentVariableode

reduced_ode,trutⅆⅆtut+ut2t=0,t=yx,ut=ⅆⅆxyx

(2)

Solve the reduced order ODE:

reduced_solSolvereduced_ode,ut

reduced_solut=ⅇ_C1t

(3)

Apply the transformation to find a simpler ODE for the original variable y(x):

new_odeevalreduced_sol,tr

new_odeⅆⅆxyx=ⅇ_C1yx

(4)

Solve the simpler ODE to find the general solution of the original ODE:

Solvenew_ode,yx

yx=2ⅇc__1x+2_C2,yx=2ⅇc__1x+2_C2

(5)

Alternatively, the original ODE can be solved in a single step if we use the option solve:

NoIndependentVariableode,solve

yx=2ⅇc__1x+2_C2,yx=2ⅇc__1x+2_C2

(6)

Another example:

ode2diffyx,x,x+yxdiffyx,x=0

ode2ⅆ2ⅆx2yx+ⅆⅆxyxyx=0

(7)

reduced_ode2,tr2NoIndependentVariableode2,yx,vs

reduced_ode2,tr2vsⅆⅆsvs+vss=0,s=yx,vs=ⅆⅆxyx

(8)

reduced_sol2Solvereduced_ode2,vs

reduced_sol2vs=s22+c__1

(9)

new_ode2evalreduced_sol2,tr2

new_ode2ⅆⅆxyx=yx22+c__1

(10)

Solvenew_ode2,yx

yx=tanhc__1x+_C222c__12

(11)

NoIndependentVariableode2,solve

yx=tanhc__1x+_C222c__12

(12)

Compatibility

• 

The Student[ODEs][ReduceOrder][NoIndependentVariable] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

dsolve

odeadvisor,missing

Student

Student[ODEs]

Student[ODEs][ReduceOrder]

Student[ODEs][ReduceOrder][NoDependentVariable]