Student[ODEs][Solve]
HighOrder
Solve a high order ODE
Calling Sequence
Parameters
Description
Examples
Compatibility
HighOrder(ODE, y(x))
ODE
-
a high order ordinary differential equation
y
name; the dependent variable
x
name; the independent variable
The HighOrder(ODE, y(x)) command finds the solution of a high order ODE, i.e. where the order is greater than 2.
Use the option output=steps to make this command return an annotated step-by-step solution. Further control over the format and display of the step-by-step solution is available using the options described in Student:-Basics:-OutputStepsRecord. The options supported by that command can be passed to this one.
with⁡StudentODEsSolve:
ode1≔x3⁢diff⁡y⁡x,x,x,x+3⁢x2⁢diff⁡y⁡x,x,x−6⁢x⁢diff⁡y⁡x,x−6⁢y⁡x=0
ode1≔x3⁢ⅆ3ⅆx3y⁡x+3⁢x2⁢ⅆ2ⅆx2y⁡x−6⁢x⁢ⅆⅆxy⁡x−6⁢y⁡x=0
IC≔eval⁡diff⁡y⁡x,x,x,x=1=−1,eval⁡diff⁡y⁡x,x,x=1=1,y⁡1=2
IC≔ⅆ2ⅆx2y⁡xx=1|ⅆ2ⅆx2y⁡xx=1=−1,ⅆⅆxy⁡xx=1|ⅆⅆxy⁡xx=1=1,y⁡1=2
HighOrder⁡ode1,y⁡x
y⁡x=4⁢_C3⁢x5+36⁢_C2⁢x+9⁢_C136⁢x2
HighOrder⁡ode1,y⁡x,ICs=IC
y⁡x=7⁢x5+65⁢x−3220⁢x2
ode2≔diff⁡y⁡x,x,x,x+3⁢diff⁡y⁡x,x,x+4⁢diff⁡y⁡x,x+2⁢y⁡x=0
ode2≔ⅆ3ⅆx3y⁡x+3⁢ⅆ2ⅆx2y⁡x+4⁢ⅆⅆxy⁡x+2⁢y⁡x=0
HighOrder⁡ode2,y⁡x
y⁡x=−ⅇ−x⁢_C2⁢sin⁡x+_C3⁢cos⁡x−2⁢_C12
HighOrder⁡ode2,y⁡x,ICs=IC
y⁡x=−3⁢ⅇ1−x⁢cos⁡x−sin⁡x⁢cos⁡1+cos⁡x⁢sin⁡1+sin⁡x⁢sin⁡1−53
The Student[ODEs][Solve][HighOrder] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
The Student[ODEs][Solve][HighOrder] command was updated in Maple 2022.
The output option was introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
dsolve
Student
Student[ODEs]
Student[ODEs][DifferentialOrder]
Download Help Document