Student[ODEs][Solve]
System
Solve a system of first order linear ODEs
Calling Sequence
Parameters
Description
Examples
Compatibility
System(SYS, Y)
System(SYS)
System(A, F, Y)
SYS
-
list, set, or equation; a system of first order linear ordinary differential equations
Y
list or set or Vector of functions; the solving variables
A
Matrix; the Matrix of coefficients
F
Vector; the Vector of forcing functions
The System(SYS, Y) command finds the solution of a system of first order linear ODEs.
The system SYS may be written as a list or set of ODEs. If the solving variables cannot be unambiguously determined from the form of SYS, Y must also be specified as a list or set containing the solving variables.
Alternatively, SYS may be written as a single equation of the form:
DY=A·Y+F
where Y is a Vector of solving variables, DY a Vector of their derivatives, A is the Matrix of coefficients, and F is the Vector of forcing functions. In this case, Y does not need to be specified as an extra argument since it can be determined from the form of SYS.
A third syntax, System(A, F, Y), is also available as a shortcut to the above syntax System(DY = A . Y + F).
Use the option output=steps to make this command return an annotated step-by-step solution. Further control over the format and display of the step-by-step solution is available using the options described in Student:-Basics:-OutputStepsRecord. The options supported by that command can be passed to this one.
with⁡StudentODEsSolve:
Here the system is written as a set of equations:
sys1≔diff⁡y1⁡x,x=7⁢y1⁡x+y2⁡x,diff⁡y2⁡x,x=−4⁢y1⁡x+3⁢y2⁡x
sys1≔ⅆⅆxy1⁡x=7⁢y1⁡x+y2⁡x,ⅆⅆxy2⁡x=−4⁢y1⁡x+3⁢y2⁡x
System⁡sys1,y1⁡x,y2⁡x
y1⁡x=−ⅇ5⁢x⁢2⁢_C2⁢x+2⁢_C1+_C24,y2⁡x=ⅇ5⁢x⁢_C2⁢x+_C1
sys2≔diff⁡y1⁡x,x=7⁢y1⁡x+y2⁡x+1,diff⁡y2⁡x,x=−4⁢y1⁡x+3⁢y2⁡x+exp⁡x
sys2≔ⅆⅆxy1⁡x=7⁢y1⁡x+y2⁡x+1,ⅆⅆxy2⁡x=−4⁢y1⁡x+3⁢y2⁡x+ⅇx
System⁡sys2
y1⁡x=−200⁢x−100⁢_C2+260⁢x−200⁢_C1+23⁢ⅇ5⁢x400+ⅇx16−325,y2⁡x=200⁢_C2−260⁢x+200⁢_C1+107⁢ⅇ5⁢x200−3⁢ⅇx8−425
sys3≔diff⁡y1⁡x,x=6⁢y1⁡x−3⁢y2⁡x+1,diff⁡y2⁡x,x=−4⁢y1⁡x+9⁢y2⁡x+cos⁡x
sys3≔ⅆⅆxy1⁡x=6⁢y1⁡x−3⁢y2⁡x+1,ⅆⅆxy2⁡x=−4⁢y1⁡x+9⁢y2⁡x+cos⁡x
System⁡sys3
y1⁡x=380247⁢_C1+59492⁢57+1140741⁢_C1+424080⁢ⅇ−−15+57⁢x23041976+−380247⁢_C2−59492⁢57+1140741⁢_C2+424080⁢ⅇ15+57⁢x23041976−123⁢cos⁡x1906+45⁢sin⁡x1906−314,y2⁡x=1520988⁢_C1+20467⁢57+176567⁢ⅇ−−15+57⁢x21520988+1520988⁢_C2−20467⁢57+176567⁢ⅇ15+57⁢x21520988−261⁢cos⁡x1906+49⁢sin⁡x1906−221
In these examples the systems are written in Vector-Matrix format:
Y≔v⁡x,w⁡x
Y≔v⁡xw⁡x
A≔7|1,−4|3
A≔71−43
F≔1,exp⁡x
F≔1ⅇx
sys4≔diff⁡Y,x=A·Y
sys4≔ⅆⅆxv⁡xⅆⅆxw⁡x=7⁢v⁡x+w⁡x−4⁢v⁡x+3⁢w⁡x
System⁡sys4
v⁡x=−ⅇ5⁢x⁢2⁢_C2⁢x+2⁢_C1+_C24,w⁡x=ⅇ5⁢x⁢_C2⁢x+_C1
sys5≔diff⁡Y,x=`%.`⁡A,Y+F
sys5≔ⅆⅆxv⁡xⅆⅆxw⁡x=71−43·v⁡xw⁡x+1ⅇx
System⁡sys5
v⁡x=−200⁢x−100⁢_C2+260⁢x−200⁢_C1+23⁢ⅇ5⁢x400+ⅇx16−325,w⁡x=200⁢_C2−260⁢x+200⁢_C1+107⁢ⅇ5⁢x200−3⁢ⅇx8−425
B≔1|2,3|2
B≔1232
sys6≔diff⁡Y,x=B·Y+F
sys6≔ⅆⅆxv⁡xⅆⅆxw⁡x=v⁡x+2⁢w⁡x+13⁢v⁡x+2⁢w⁡x+ⅇx
System⁡B,F,Y
v⁡x=−30⁢_C1−12⁢ⅇ−x30+20⁢_C2+7⁢ⅇ4⁢x30−ⅇx3+12,w⁡x=20⁢_C1+8⁢ⅇ−x20−34+20⁢_C2+7⁢ⅇ4⁢x20
The Student[ODEs][Solve][System] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
The Student[ODEs][Solve][System] command was updated in Maple 2022.
The output option was introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
dsolve
Matrix
Student
Student[ODEs]
Vector
Download Help Document